

LÜRV-A Klärschlamm 2024

Organik

Länderübergreifender Ringversuch nach Fachmodul Abfall für den Bereich Klärschlamm – Organik

FMA 1.5: Polychlorierte Biphenyle (PCB) FMA 1.6: Dioxine / Furane (PCDD/PCDF) Dioxinähnliche PCB (dl-PCB)

FMA 1.7 Benzo(a)pyren (B(a)P),

FMA 1.8 Polyfluorierte Tenside (PFC, PFOA und PFOS)

Auswertung nach DIN 38402 A45: 2014.06 und auf Basis von Z_u-Scores mit der vom VDLUFA autorisierten Software ProLab (Version. 2021.7.22.0)

Bericht Ausrichter
Landwirtschaftliche Untersuchungs- und
Forschungsanstalt (LUFA) Speyer

Landwirtschaftliche Untersuchungs-und Forschungsanstalt Obere Langgasse 40 67346 Speyer

Telefon: 06232/136-0 Fax: 06232/136-110

Email: luerv-speyer@lufa-speyer.de

Bearbeitung und Verantwortlichkeit:

Landwirtschaftliche Untersuchungs- und Forschungsanstalt Speyer:			
Dr. Diana Bunzel Jan Jungkind	Leitung	Tel.: 06232/136-0	bunzel@lufa-speyer.de jungkind@lufa-speyer.de
Sabine Reh	Analytik Anorganik	Tel.: 06232/136-383	reh@lufa-speyer.de
Dr. Dieter Martens	Analytik, PFT	Tel.: 06232/136-155	martens@lufa-speyer.de
Dr. Anja Mannuß	Probenbereitung ProLab Anwendung, Berichterstattung	Tel.: 06232/136-291	mannuss@lufa-speyer.de

Inhalt	tsangabe Allgemeine Bemerkungen zur Durchführung	5
1.1	Einleitung	5
1.2	Probenvorbereitung und Homogenitätstest	5
1.3	Untersuchungsparameter und Vorgaben	7
1.4	Fehlerdefinition und statistische Auswertung	8
1.5	Laborbewertung	10
1.6	Zeitlicher Ablauf und Teilnehmer	11
1.7	Zusammenfassende Bewertung	12
1.8	Abkürzungen	16
2	Ergebnisse	17
2.1	Polychlorierte Biphenyle (PCB)	17
2.1.1	Merkmalsübersicht	17
2.1.2	PCB 28	18
2.1.3	PCB 52	21
2.1.4	PCB 101	24
2.1.5	PCB 138	27
2.1.6	PCB 153	30
2.1.7	PCB 180	33
2.1.8	Laborbewertung FMA 1.5	36
2.2	Polychlorierte Dibenzodioxine/ -furane/dIPCB	37
2.2.1	Merkmalsübersicht	37
2.2.2	D48 – 2,3,7,8 – Tetra CDD	40
2.2.3	D54 – 1,2,3,7,8 – Penta CDD	41
2.2.4	D66 – 1,2,3,4,7,8 - Hexa CDD	42
2.2.5	D67 – 1,2,3,6,7,8 – Hexa CDD	44
2.2.6	D70 – 1,2,3,7,8,9 – Hexa CDD	46
2.2.7	D73 – 1,2,3,4,6,7,8 – Hepta CDD	48
2.2.8	D75 – 1,2,3,4,5,6,7,8 – Octa CDD	50
2.2.9	F83 – 2,3,7,8 – Tetra CDF	52
2.2.10	F94 – 1,2,3,7,8 – Penta CDF	54
2.2.11	F114 – 2,3,4,7,8 – Penta CDF	56
2.2.12	F118 – 1,2,3,4,7,8 – Hexa CDF	58
2.2.13	F121 – 1,2,3,6,7,8 – Hexa CDF	60
2.2.14	F124 – 1,2,3,7,8,9 – Hexa CDF	62
2.2.15	F130 – 2,3,4,6,7,8 – Hexa CDF	63
2.2.16	F131 – 1,2,3,4,6,7,8 – Hepta CDF	65
2.2.17	F134 – 1,2,3,4,7,8,9 – Hepta CDF	67
2.2.18	F135 – 1,2,3,4,5,6,7,8 - Octa CDF	69
2.2.19	Toxizitätsäquivalent (TE) Dioxine/Furane	71
2.2.20	PCB 77	73
2.2.21	PCB 81	75
2.2.22	PCB 105	77
2.2.23	PCB 114	79
2.2.24	PCB 118	81
2.2.25	PCB 123	83

2.2.26	PCB 126	85
2.2.27	PCB 156	87
2.2.28	PCB 157	89
2.2.29	PCB 167	91
2.2.30	PCB 169	93
2.2.31	PCB 189	95
2.2.32	PCB TE (Toxizitätsäquivalent dl-PCB)	97
2.2.33	Laborbewertung FMA 1.6 Dioxine	99
2.2.34	Laborbewertung FMA 1.6 Furane	100
2.2.35	Laborbewertung FMA 1.6 dIPCB + Gesamtauswertung	101
3.1	Benzo(a)pyren + Laborbewertung FMA 1.7	103
3.2	Auswertung der Methodenspezifizierung zur Benzo(a)pyren Analytik	107
4.1	Perfluoroctansäure (PFOA)	111
4.2	Perfluoroctansulfonat (PFOS)	113
4.3	Perfluorierte Tenside PFC + Laborbewertung FMA 1.8	115

1 Allgemeine Bemerkungen zur Durchführung

1.1 Einleitung

Im Vollzug der Klärschlamm-, Bioabfall- und Düngeverordnung wurde 2024 für alle Parameterbereiche des Fachmoduls Abfall ein länderübergreifender Ringversuch Abfall (LÜRV-A) bundesweit angeboten.

Eine erfolgreiche Teilnahme am LÜRV-A Klärschlamm, Boden bzw. Bioabfall ist Teil des Kompetenznachweises für Laboratorien und gemäß Fachmodul Abfall eine notwendige Voraussetzung für deren Notifizierung zur Durchführung von Untersuchungen nach AbfKlärV, Bio-AbfV und der BBodSchV.

Das Bestehen des Ringversuchs der jeweiligen Matrix als Qualifikationsnachweis wird von den Notifizierungsstellen aller Bundesländer anerkannt.

Die Durchführung der externen Qualitätsprüfung für Klärschlamm erfolgt in Zusammenarbeit mit der Bayerischen Landesanstalt für Landwirtschaft (LfL), Freising, wobei die LfL Freising die Federführung übernommen hat.

Das Ziel dieser externen Qualitätsprüfung besteht vor allem darin, den Stand der Qualität bei der Untersuchung von Klärschlämmen im Rahmen der Vorgaben zu prüfen. Dabei wird auf die Vergleichbarkeit der Qualitätsstandards in den verschiedenen Bundesländern geachtet.

Die Planung und Durchführung der Ringuntersuchung erfolgte unter Beachtung der DIN-Bestimmungen (DIN 38402-45:2014-06) und unter Berücksichtigung des Fachmoduls Abfall (FMA).

Die neuste Version des Fachmoduls Abfall wurde im Mai 2023 veröffentlicht. Für den Übergang konnten sowohl Methoden des neuen als auch des alten Fachmoduls (2018) im Ringversuch angewandt werden.

Das FMA 1.8 (PFC, PFOS, PFOA) wird als ein gemeinsamer Teilbereich ausgewertet (laut Protokollbeschluss aus der Sitzung Ringversuchsveranstalter/Notifizierungsstellen vom 22.10.2018).

Der vorliegende Bericht beinhaltet die Auswertung der Ergebnisse des LÜRV-A Klärschlamm 2024 Teilbereich Organik. Hierzu gehören die Parametergruppen FM 1.5, FM 1.6, FM 1.7 und FM 1.8 Diese Teilbereiche werden von der Landwirtschaftlichen Untersuchungs- und Forschungsanstalt (LUFA) Speyer betreut und ausgewertet.

1.2 Probenvorbereitung und Homogenitätstest

Bei den zu untersuchenden Proben handelte es sich um frisches Klärschlammmaterial. Die Proben wurden Anfang des Jahres 2024 in verschiedenen Kläranlagen gezogen und bis zur weiteren Behandlung kühl gelagert. Zur Herstellung der Ringversuchsproben im April 2024

wurden die einzelnen Proben jeweils in einer Rührmaschine gründlich homogenisiert und anschließend jeweils ca. 750 g in Kunststoffgefäße abgefüllt. Da die Gehalte in den vergangenen Jahren von PFOA und auch von PFOS in Klärschlämmen sehr gering waren, wurde während der Homogenisierung bei diesem Ringversuch bei KS A und KS B PFOA und PFOS dotiert. Die abgefüllten Proben wurden bis zum Versand tiefgefroren gelagert.

Neben den zu verschickenden Proben wurden in regelmäßigen Abständen Proben für die Homogenitätstests entnommen.

Für den Homogenitätstest wurden die Proben auf Phosphat und Kupfer im Königswasseraufschluss und auf PFOA untersucht. Die Zahlenwerte der in den Proben ermittelten Gehalte wurden auf Homogenität geprüft. Dabei konnten keine signifikanten Unterschiede festgestellt werden. Die Sollstandardabweichung S_{soll} ergab sich aus dem Mittelwert der Standardabweichungen der LÜRV-A Ringversuche Klärschlamm von 2011 bis 2024.

KS A

Merkmal	P ₂ O ₅ [%]	Cu [mg/kg TS]	PFOA [mg/kg TS]
Probenzahl	15	15	15
Mittelwert	8,27	328,38	0,09
Stdabw.	0,04	1,98	0,004
Variationskoeff.	0,49%	0,60 %	2,01 %
S _{Soll}	6,79%	5,85%	27,63 %

KS B

Merkmal	P ₂ O ₅ [%]	Cu [mg/kg TS]	PFOA [mg/kg TS]
Probenzahl	15	15	15
Mittelwert	7,71	410,16	0,57
Stdabw.	0,11	2,64	0,014
Variationskoeff.	1,39 %	0,64 %	1,96 %
S _{Soll}	6,79%	5,85 %	27,63 %

1.3 Untersuchungsparameter und Vorgaben

Die Proben für diesen Ringversuch wurden codiert den Teilnehmern zugesandt. Mit Hilfe der per Email verschickten Dateien zur Ergebnisübermittlung konnten die Teilnehmer feststellen, welche Proben auf welche Parameter zu untersuchen waren. Eine Anmeldung für einzelne Untersuchungsgruppen war möglich.

An den versandten Proben **KS A** und **KS B** war folgender Untersuchungsbereich/Parameter zu untersuchen:

- FMA 1.5: Polychlorierte Biphenyle (PCB) nach §5, Abs.2, Nr 1 AbfKlärV
- FMA 1.6: Polychlorierte Dibenzodioxine/-furane (PCDD/-F) und dioxinähnliche polychlorierte Biphenyle (dl-PCB) nach §5, Abs.2, Nr 2 AbfKlärV
- FMA 1.7: Benzo(a)pyren (B(a)P) nach §5, Abs.2, Nr 3 AbfKlärV
- FMA 1.8: perfluorierte Verbindungen (PFC (Summe aus PFOA und PFOS) nach §5, Abs.2, Nr 4 AbfKlärV

Außerdem wurde im Anschreiben um Angabe der Gesamttrockensubstanz gebeten. Die Gesamttrockensubstanz wurde allerdings nicht in der Auswertung berücksichtigt und ist deshalb im vorliegenden Report nicht dargestellt. Um den Einfluß der Extraktionsmethode und des verwendeten Lösungsmittels auf die Benzoapyrenanalytik weiter auswerten zu können, wurde neben der DIN-Norm auch Angaben über die verwendete Extraktionsmethode und das verwendete Lösungsmittel bei der Benzoapyrenanalytik abgefragt. Diese Abgabe hatte keinerlei Einfluß auf die Auswertung des Ringversuches.

Alle geforderten Parameter mussten im Labor des Teilnehmers bestimmt werden. Eine Unterauftragsvergabe an ein anderes Labor – auch nicht an ein zur Firmengruppe gehörendes – war nicht erlaubt. Für die Analysen waren die im neuen Fachmodul Abfall (Mai 2023) und auch die des alten Fachmoduls (2018) aufgelisteten Methoden zulässig sowie die Methoden der Klärschlammverordnung. Die Teilnehmer sollten ihre jeweilig notifizierten Verfahren anwenden. Hinweise zur analytischen Vorgehensweise waren im Anschreiben zum Ringversuch bekannt gemacht worden.

Die Klärschlämme waren zunächst gefrierzutrocknen. Vor der Bearbeitung sollten alle Klärschlammproben auf die durch die AbfKlärV geforderte Partikelfeinheit von ≤ 0,1 mm gemahlen werden. Für den exakten Bezug der Ergebniswerte auf die (105°C) Trockensubstanz sollte eine Restwasserbestimmung vorgenommen und bei der Ergebnisberechnung berücksichtigt werden.

Bei allen Parametergruppen sollte eine Doppelbestimmung durchgeführt werden, wobei nur der Mittelwert zu berichten war.

Für diesen Ringversuch wurden folgende Mindestbestimmungsgrenzen festgelegt:

FMA 1.5 (PCB)	1	μg/kg TS
FMA 1.6 (PCDD/F, dIPCB)	1	ng/kg TS
FMA 1.7 Benzo(a)pyren	0,05	mg/kg TS
FMA 1.8 (PFT, PFOA, PFOS)	0,01	mg/kg TS

Gehalte unter der Bestimmungsgrenze waren als "kleiner als"-Werte anzugeben und gingen mit der Hälfte des angegebenen Wertes in die Berechnung ein. Dabei war zu beachten, dass die vorgegebenen Mindestbestimmungsgrenzen eingehalten wurden. Die Berechnung und Summierung der Toxizitäsäquivalente (TE) sollte nach TEF-WHO 2005 erfolgen, die Addition erfolgte nach AbfKlärV vom 27.09.2017.

1.4 Fehlerdefinition und statistische Auswertung

Als nicht erfolgreich analysiert gelten laut Ausschreibung:

- Werte mit berechneten Z_u-Scores größer 2,0 oder kleiner −2,0
- Ergebnisbefunde "n.n." oder "<", bei denen die Zahlenangabe oberhalb der vorgegebenen Mindestbestimmungsgrenze liegen
- Werte, die nicht innerhalb der vorgegebenen Frist beim Veranstalter eintreffen
- Werte, die aus der Untervergabe an ein Filial- oder Fremdlabor stammen
- Nicht bestimmte Werte

Die statistische Auswertung erfolgte mit Hilfe des Programms ProLab der Firma QuoData GmbH, Dresden (Version. 2021.7.22.0). Hierbei wurde das Auswertmodul DIN 38402 A 45 (modifizierte robuste Q-Methode und Hampelschätzer) verwendet. Die endgültige Laborbewertung erfolgte auf der Basis von Z_u -Scores, wobei als Grenze \pm 2 gesetzt wurde. Die Z_u -Scores wurden auf eine Nachkommastelle gerundet angegeben. Die Bewertung eines Parameters erfolgte nur, wenn mindestens 75% der abgegebenen Werte quantifizierbar waren

(nach DIN38402-45). Dies traf für die Proben-Parameter-Kombination KS A: F124, D_48, D_54, D_66 und bei KS B: F_124; D_48, D_54 nicht zu.

Nach AQS-Merkblatt A03 (August 2013) kann von einer Bewertung abgesehen werden, wenn die berechnete untere Toleranzgrenze unterhalb der vorgegebenen Bestimmungsgrenze liegt, soweit dies nicht zu einer ungerechten Behandlung von Teilnehmern führt. Die berechnete untere Toleranzgrenze lag bei folgenden Proben-Parameter-Kombinationen unterhalb der vorgegebenen Bestimmungsgrenze: Bei KS A: PCB 28, F_121, F134, D_ und bei Klärschlamm B: PCB 28, F_94, F_118, F_121, F_130, F_134, D_66, und D_70. Alle Parameter mit der unteren Toleranzgrenze unter der Bestimmungsgrenze wurden ausgewertet und in die Bewertung einbezogen

Zusätzlich wurden beim Untersuchungsbereich FMA 1.5, FMA 1.7 und FMA 1.8 die Horwitz-Verhältniszahlen berechnet (sog. HORRAT). Mit dieser Maßzahl können Aussagen über die Güte eines Ringversuchs in Bezug auf den untersuchten Parameter getroffen werden. HORRAT als Maß für die Tauglichkeit der verwendeten Analysenmethoden, der Proben sowie der teilnehmenden Labore ermöglicht eine Abschätzung der Plausibilität und Qualität der erhaltenen Messwerte. Unter normalen Bedingungen liegen HORRAT-Koeffizienten im Bereich von 0,5 - 2,0. Bei HORRATs < 0,5 liegt die Qualität über, bzw. bei > 2,0 unter dem nach Horwitz erwarteten Wert. In Übereinstimmung der Ringversuchsveranstalter des LÜRV-A werden in solchen Fällen entsprechende Soll-Vergleichsstandardabweichungen auf der Basis von HORRAT = 0,5 bzw. 2,0 ermittelt und für die Berechnung der Z_u-Scores eingesetzt. Für die Toleranzgrenzen ergibt sich hiermit bei kleinem HORRAT ein breiterer bzw. bei großem HORRAT ein engerer Toleranzbereich.

$$HORRAT = \frac{S_R}{0.02xc^{0.8495}}$$

mit S_R (Vergleichsstandardabweichung) und c (Mittelwert), jeweils als Massenanteile berechnet

Laut Protokollbeschluss aus der Sitzung Ringversuchsveranstalter/Notifizierungsstellen vom 17.11.2016 erfolgt eine Eingrenzung/Aufweitung auf Basis der HorRat-Funktion im Ermessen des Ringversuchsveranstalters.

Beim Parameter Benzo(a)pyren im KS B lag der berechnete Horrat bei 2,3. Die Werte wurden belassen und es erfolgte keine Eingrenzung. Für alle anderen in die Bewertung einbezogenen Parameter der Untersuchungsbereiche FMA 1.5, FMA 1.7 und FMA 1.8 lagen die ermittelten Zahlen innerhalb der geforderten Spannweite von 0,5 - 2,0, so dass an den sich aus dem Berechnungsverfahren ermittelten Standardabweichungen keine Änderungen vorgenommen werden mussten.

Beim Untersuchungsbereich FMA 1.6 erfolgte eine solche Berechnung nicht, da die Formel von Horwitz auf Gehalte im Bereich [ng/kg] nicht anwendbar ist. Eine Berechnung erfolgte somit nach der modifizierten Formel nach Thompson.

$$HORRAT = \frac{S_R}{0,22xc}$$

mit S_R (Vergleichsstandardabweichung) und c (Mittelwert), jeweils als Massenanteile berechnet

In KS A lag der Horrat (nach Thompson) für die Parameter D_73 und D_75 bei 0,3 bzw. 0,4. In KS B lag der Horrat für die Paramete F_131 und D_75 bei 0,4. Für die genannten Parameter wurden Standardabweichung und Toleranzgrenzen mit Hilfe der Horwitz-Verhältniszahl nach Thompson von 0,5 berechnet

1.5 Laborbewertung

Die Bewertung des Ringversuchs erfolgte parametergruppenweise nach den Richtlinien des Fachmoduls Abfall/AQS Merkblatt A3. Demnach ist ein Ringversuch erfolgreich absolviert, wenn

mindestens 80% der Mittelwerte aller Proben-Parameter-Kombinationen ("Analysen")
 erfolgreich analysiert sind

und

 mindestens 80% der zu untersuchenden Parameter erfolgreich analysiert sind. Ein Parameter ist erfolgreich analysiert, wenn mindestens 50% der Mittelwerte eines Parameters im Toleranzbereich liegen.

Zudem findet letzteres laut AQS Merkblatt A3 nur dann Anwendung, wenn der betreffende Teilbereich mindestens 5 Parameter umfasst. Unter Berücksichtigung der in 1.3 genannten Parametern, die nicht zur Bewertung hinzugezogen werden gilt für:

• Untersuchungsbereich FMA 1.5 (PCB):

Analysen: 12 \rightarrow davon 80 %: 9,6 \rightarrow 2 Fehler erlaubt Parameter: 6 \rightarrow davon 80 %: 4,8 \rightarrow 1 Fehler erlaubt

Untersuchungsbereich FMA 1.6 (PCDD/F + dIPCB):

Analysen: 55 \rightarrow davon 80 %: 44 \rightarrow 11 Fehler erlaubt Parameter: 28 \rightarrow davon 80 %: 22,4 \rightarrow 5 Fehler erlaubt

• Untersuchungsbereich FMA 1.7 (B(a)P):

Analysen 2 Beide Analysen müssen richtig sein

Parameter 1 Kein Fehler erlaubt

Untersuchungsbereich FMA 1.8 (PFC (PFOA+PFOS))

Analysen: 6 →davon 80 %: 4,8 → 1 Fehler erlaubt

Parameter: 3 davon 80 %: 2,4 → kein Fehler erlaubt

Jede Parametergruppe wurde separat ausgewertet, d.h. es ist möglich, dass ein Labor bei einer Gruppe den Ringversuch bestanden hat, bei der anderen nicht.

Die Untersuchung der Klärschlämme auf FMA 1.7 Benzo(a)pyren galten als bestanden, sobald beide Proben eines Parameters korrekt analysiert wurden (nach Protokollbeschluß aus dem Treffen der Ringversuchsveranstalter/Notifizierungsstellen vom 12.11.2014). Nach Protokollbeschluß des Treffens der Ringversuchsanstalter am 22.10.2018 wurde beschlossen den Bereich FMA 1.8 PFC als ein Teilbereich auszuwerten.

1.6 Zeitlicher Ablauf und Teilnehmer

Im Januar 2024 erfolgte die Ankündigung des LÜRV-A 2024 in allen Bundesländern durch die jeweiligen Notifizierungsstellen mit direktem Anschreiben oder im Internet. Im Ankündigungsschreiben wurde auf die Homepage des BfUL (www.bful.sachsen.de) verwiesen. Dort wurden 2024 die Anmeldungen gesammelt

Die Anmeldefrist endete am 22.03.2024. Die Anmeldungen wurden am 28.03.2024 an die LUFA Speyer übermittelt. Für den LÜRV-A Klärschlamm – Teilbereich Organik lagen insgesamt 49 Anmeldungen vor.

Am 23.04.2024 wurden die tiefgefrorenen Proben mit Anlagen und per Email die Dateien zur Ergebnisübermittlung verschickt. Die Einsendung der Ergebnisse war auf den 04.06.2024 terminiert.

Die ermittelten Messwerte wurden von den Teilnehmern mit Hilfe des Programms RingDat4 in die laborspezifischen Dateien zur Ergebniserfassung eingetragen. Zur Ergebnisübermittlung wurden diese Dateien per Email an die LUFA Speyer geschickt. Ein unterschriebener Ausdruck des Ergebnisprotokolls wurde ergänzend erwartet und sollte per Post, FAX oder E-Mail an uns geschickt werden.

Die Übernahme der Werte in das zur Ringversuchsauswertung benutzte Programm ProLab (Version 2021.7.22.0) und die Auswertung erfolgte im Juli und August 2024.

Für die Parametergruppe PCB (FMA 1.5) hatten sich 34 Labore und für die Parametergruppe PCDD/F + dIPCB (FMA 1.6) 18 Labore angemeldet.

Für das FMA 1.7 B(a)P lagen 38 Anmeldungen vor, für das FMA 1.8 PFC (PFOA+PFOS) 30.

Ein Labor hatte sich für die Parameter FMA 1.5 angemeldet aber keine Werte abgegeben. Ein Labor hat sich für den Parameter 1.6 angemeldet aber keine Werte abgegeben. Ein Labor hat sich für den Parameter 1.8 angemeldet aber keine Werte abgegeben Alle anderen haben fristgerecht ihre Ergebnisse berichtet. Somit errechnen sich die Kenndaten der PCB (FMA 1.5) aus den Ergebnissen von 33 Teilnehmern, der PCDD/F + dIPCB (FMA 1.6) aus den Ergebnissen von 17 Teilnehmern, von B(a)P (FMA 1.7) aus den Ergebnissen von 38 Teilnehmern und PFC (PFOA+PFOS, FMA 1.8) aus den Ergebnissen von 29 Teilnehmern.

1.7 Zusammenfassende Bewertung

Ergebnis	FMA 1.5 (PCB)	FMA 1.6 (PCCD/PCDF/dIPCB)	FMA 1.7 (B(a)P)	FMA 1.8 (PFC)
bestanden (ohne Fehler)	47,10 %	33,33 %	92,11 %	76,67 %
bestanden (mit Fehler)	29,40 %	44,44 %	-	10,00 %
nicht bestanden	23,50 %	22,22 %	7,89 %	13,33 %
Anzahl Teilnehmer	34	18	38	30

(Es wurde in der Tabelle und in den Abbildungen 1-7 auch die Labore Berücksichtigt, die eine Anmeldung aber keine Ergebnisse abgegeben hatten)

FWA1.5 PCB

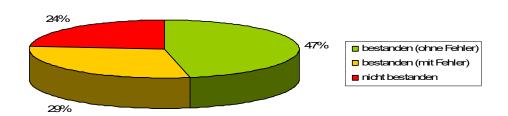
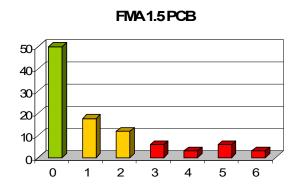



Abb. 1: Ergebnis des Ringversuchs LÜRV-A Klärschlamm 2024 – Organik für den Parameterbereich FMA 1.5 (% Labore, 34 Teilnehmer)

Labore [%]

Fehleranzahl

Abb. 2: Anteil der teilnehmenden Labore (%) in Bezug auf die Analysenfehler im Parameterbereich FMA 1.5

FMA 1.6 Dioxine/Furane/dIPCB

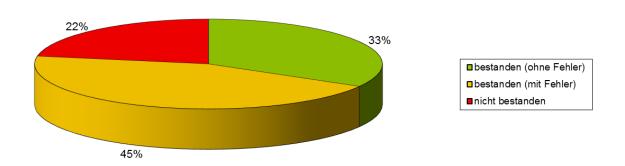
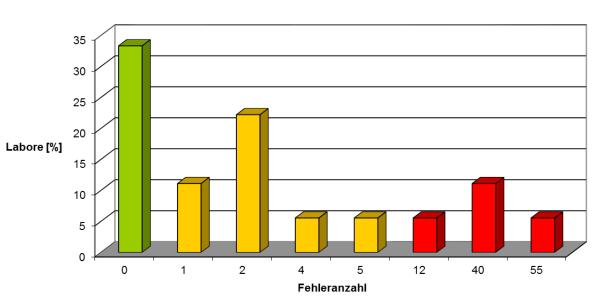



Abb. 3: Ergebnis des Ringversuchs LÜRV-A Klärschlamm 2024 – Organik für den Parameterbereich FMA 1.6 (% Labore, 18 Teilnehmer)

FMA 1.6 Dioxine/Furane

Abb. 4: Anteil der teilnehmenden Labore (%) in Bezug auf die Analysenfehler im Parameterbereich FMA 1.6 Dioxine/Furane/dIPCB

FMA 1.7 Benzo(a)pyren (B(a)P)

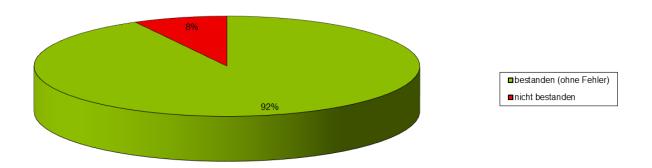


Abb. 5: Ergebnis des Ringversuchs LÜRV-A Klärschlamm 2024 – Organik für den Parameter B(a)P (% Labore, 38 Teilnehmer)

FWA1.8 PFC (Summe PFOA und PFOS)

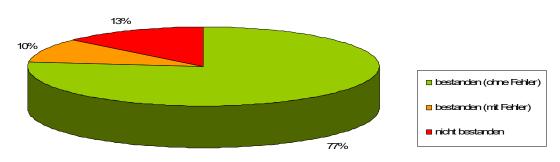


Abb. 6: Ergebnis des Ringversuchs LÜRV-A Klärschlamm 2024 – Organik für den Parameter PFC (% Labore, 29 Teilnehmer)

1.8 Abkürzungen

GH Gehalt (Mittelwert aus Doppelbestimmung)

TM Trockenmasse KS Klärschlamm

> Zu Überschreitung des Zu-Scores < Zu Unterschreitung des Zu-Scores

F1 Fehler bei Proben-Parameter-Kombinationen ("Analysen")

F2 Fehler bei Parametern

FMA Fachmodul Abfall

F Fehler bei der Beachtung der Mindestbestimmungsgrenze bei der

Werteabgabe oder keine Abgabe eines Wertes

E Fehler

2 Ergebnisse

2.1 FMA 1.5 Polychlorierte Biphenyle (PCB)

2.1.1 Merkmalsübersicht

Merkmal	Einheit	Probe	Mittelwert	Vergleichsstandard- abweichung	untere Toleranzgrenze	obere Toleranzgrenze
PCB 28	μg/kg TM	KS A (1)	1,347	0,469	0,530	2,511
		KS B (1)	2,022	0,741	0,745	3,877
PCB 52	μg/kg TM	KS A	3,852	0,928	2,171	5,992
		KS B	4,754	1,382	2,290	8,051
PCB 101	μg/kg TM	KS A	7,588	2,286	3,527	13,082
		KS B	6,580	1,897	3,194	11,101
PCB 138	μg/kg TM	KS A	14,657	3,451	8,392	22,585
		KS B	7,499	1,633	4,516	11,207
PCB 153	μg/kg TM	KS A	15,572	3,468	9,248	23,470
		KS B	8,601	2,211	4,615	13,756
PCB 180	μg/kg TM	KS A	12,280	2,671	7,401	18,343
		KS B	5,188	1,442	2,605	8,601

⁽¹⁾ Bei diesen Parameter-Proben-Kombinationen lag die untere Toleranzgrenze unterhalb der Bestimmungsgrenze

2.1.2 PCB 28 [µg/kg TM]

Bei Klärschlamm A und B lag die untere Toleranzgrenze unterhalb der Bestimmungsgrenze. Die Werte für wurden ausgewertet und in Bewertung einbezogen. (vgl. Anmerkung Kapitel 1.4)

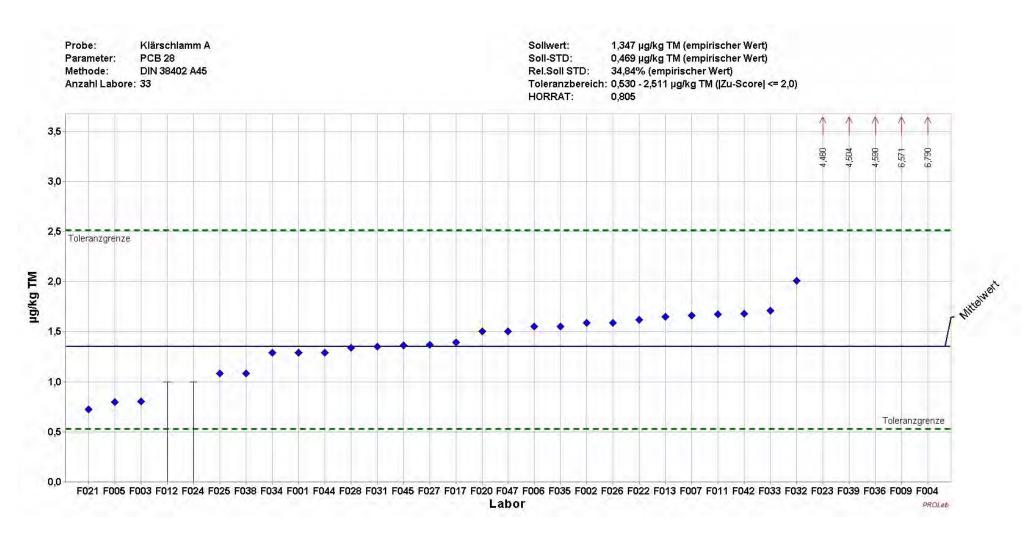
KS A

Labor Messwert: Zu-Score Ausreißer F001 1,29 -0,1 F002 1,59 0,4 F003 0,8 -1,3 F004 6,79 9,4 E F005 0,797 -1,3 F006 1,55 0,3 F007 1,66 0,5 F009 6,571 9,0 E F011 1,67 0,6 F F012 <1 -2,1 E F013 1,65 0,5 F F017 1,391 0,1 F F020 1.5 0,3 F F021 0,724 -1,5 F F022 1,62 0,5 F F023 4,48 5,4 E F024 <1 -2,1 E F025 1,08 -0,7 F F026 1,59 0,4 F F027 1,37 0,0	KS A			
F002 1,59 0,4 F003 0,8 -1,3 F004 6,79 9,4 E F005 0,797 -1,3 F F006 1,55 0,3 F F007 1,66 0,5 F F009 6,571 9,0 E F011 1,67 0,6 F F012 <1	Labor	Messwert:	Zu-Score	Ausreißer
F003 0,8 -1,3 F004 6,79 9,4 E F005 0,797 -1,3 E F006 1,55 0,3 F F007 1,66 0,5 F F009 6,571 9,0 E F011 1,67 0,6 F F012 <1	F001	1,29	-0,1	
F004 6,79 9,4 E F005 0,797 -1,3 -1,3 F006 1,55 0,3 F007 1,66 0,5 -1,3 -1,3 -1,3 -1,5 -1,6 -1,5 -1,5 -1,6 -1,5 -1,6 -1,0 -1,0 -1,0 -1,0 -1,0 -1,0	F002	1,59	0,4	
F005 0,797 -1,3 F006 1,55 0,3 F007 1,66 0,5 F009 6,571 9,0 E F011 1,67 0,6 E F011 1,67 0,6 E F012 <1	F003	0,8	-1,3	
F006 1,55 0,3 F007 1,66 0,5 F009 6,571 9,0 E F011 1,67 0,6 E F012 <1	F004	6,79	9,4	Е
F007 1,66 0,5 F009 6,571 9,0 E F011 1,67 0,6 E F012 <1	F005	0,797	-1,3	
F009 6,571 9,0 E F011 1,67 0,6 E F012 <1	F006	1,55	0,3	
F011 1,67 0,6 F012 <1 -2,1 E F013 1,65 0,5 F017 1,391 0,1 F020 1.5 0,3 F021 0,724 -1,5 F022 1,62 0,5 F023 4,48 5,4 E F024 <1 -2,1 E F025 1,08 -0,7 F026 1,59 0,4 F027 1,37 0,0 F028 1,340 0,0 F031 1,35 0,0 F032 2,01 1,1 F033 1,71 0,6 F034 1,287 -0,1 F035 1,55 0,3 F036 4,59 5,6 E F038 1,08 -0,7 F039 4,504 F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F007	1,66	0,5	
F012 <1 -2,1 E F013 1,65 0,5	F009	6,571	9,0	Е
F013 1,65 0,5 F017 1,391 0,1 F020 1.5 0,3 F021 0,724 -1,5 F022 1,62 0,5 F023 4,48 5,4 E F024 <1	F011	1,67	0,6	
F017 1,391 0,1 F020 1.5 0,3 F021 0,724 -1,5 F022 1,62 0,5 F023 4,48 5,4 E F024 <1	F012	<1	-2,1	Е
F020 1.5 0,3 F021 0,724 -1,5 F022 1,62 0,5 F023 4,48 5,4 E F024 <1	F013	1,65	0,5	
F021 0,724 -1,5 F022 1,62 0,5 F023 4,48 5,4 E F024 <1	F017	1,391	0,1	
F022 1,62 0,5 F023 4,48 5,4 E F024 <1	F020	1.5	0,3	
F023 4,48 5,4 E F024 <1	F021	0,724	-1,5	
F024 <1 -2,1 E F025 1,08 -0,7	F022	1,62	0,5	
F025 1,08 -0,7 F026 1,59 0,4 F027 1,37 0,0 F028 1,340 0,0 F031 1,35 0,0 F032 2,01 1,1 F033 1,71 0,6 F034 1,287 -0,1 F035 1,55 0,3 F036 4,59 5,6 E F038 1,08 -0,7 F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F023	4,48	5,4	E
F026 1,59 0,4 F027 1,37 0,0 F028 1,340 0,0 F031 1,35 0,0 F032 2,01 1,1 F033 1,71 0,6 F034 1,287 -0,1 F035 1,55 0,3 F036 4,59 5,6 E F038 1,08 -0,7 F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F024	<1	-2,1	E
F027 1,37 0,0 F028 1,340 0,0 F031 1,35 0,0 F032 2,01 1,1 F033 1,71 0,6 F034 1,287 -0,1 F035 1,55 0,3 F036 4,59 5,6 E F038 1,08 -0,7 F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F025	1,08	-0,7	
F028 1,340 0,0 F031 1,35 0,0 F032 2,01 1,1 F033 1,71 0,6 F034 1,287 -0,1 F035 1,55 0,3 F036 4,59 5,6 E F038 1,08 -0,7 F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F026	1,59	0,4	
F031 1,35 0,0 F032 2,01 1,1 F033 1,71 0,6 F034 1,287 -0,1 F035 1,55 0,3 F036 4,59 5,6 E F038 1,08 -0,7 F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F027	1,37	0,0	
F032 2,01 1,1 F033 1,71 0,6 F034 1,287 -0,1 F035 1,55 0,3 F036 4,59 5,6 E F038 1,08 -0,7 F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F028	1,340	0,0	
F033 1,71 0,6 F034 1,287 -0,1 F035 1,55 0,3 F036 4,59 5,6 E F038 1,08 -0,7 F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F031	1,35	0,0	
F034 1,287 -0,1 F035 1,55 0,3 F036 4,59 5,6 E F038 1,08 -0,7 F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F032	2,01	1,1	
F035 1,55 0,3 F036 4,59 5,6 E F038 1,08 -0,7 F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F033	1,71	0,6	
F036 4,59 5,6 E F038 1,08 -0,7 F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F034	1,287	-0,1	
F038 1,08 -0,7 F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F035	1,55	0,3	
F039 4,504 5,4 E F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F036	4,59	5,6	E
F042 1,68 0,6 F044 1,29 -0,1 F045 1,36 0,0	F038	1,08	-0,7	
F044 1,29 -0,1 F045 1,36 0,0	F039	4,504	5,4	Е
F045 1,36 0,0	F042	1,68	0,6	
	F044	1,29	-0,1	
F047 1,50 0,3	F045	1,36	0,0	
	F047	1,50	0,3	

KS B

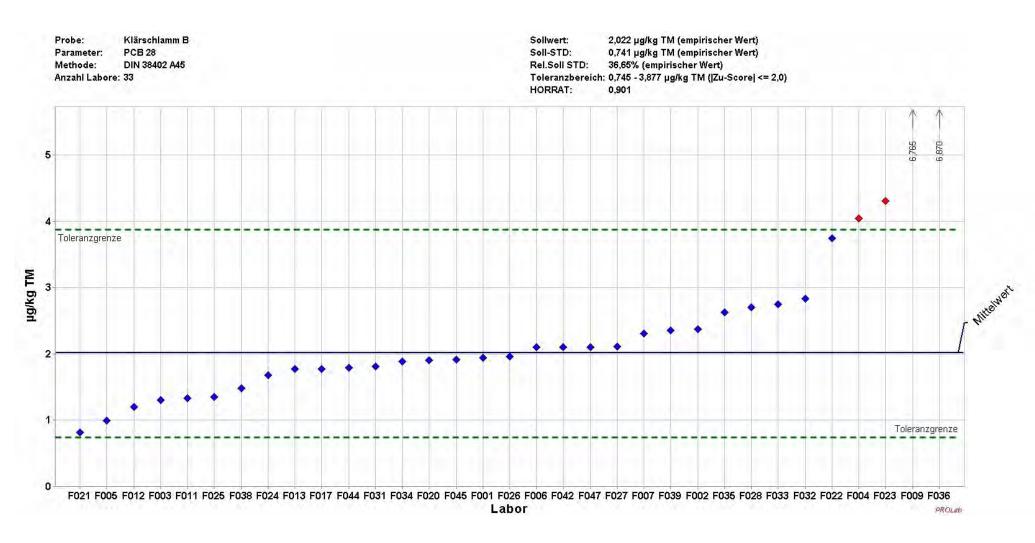
Labor	Messwert:	Zu-Score	Ausreißer
F001	1,94	-0,1	
F002	2,37	0,4	
F003	1,3	-1,1	
F004	4,04	2,2	E
F005	0,991	-1,6	
F006	2,10	0,1	
F007	2,31	0,3	
F009	6,765	5,1	E
F011	1,33	-1,1	
F012	1,20	-1,3	
F013	1,77	-0,4	
F017	1,776	-0,4	
F020	1.9	-0,2	
F021	0,818	-1,9	
F022	3,74	1,9	
F023	4,31	2,5	E
F024	1,68	-0,5	
F025	1,35	-1,1	
F026	1,96	-0,1	
F027	2,11	0,1	
F028	2,700	0,7	
F031	1,81	-0,3	
F032	2,83	0,9	
F033	2,75	0,8	
F034	1,882	-0,2	
F035	2,63	0,7	
F036	6,87	5,2	E
F038	1,48	-0,8	
F039	2,355	0,4	
F042	2,10	0,1	
F044	1,79	-0,4	
F045	1,91	-0,2	
F047	2,10	0,1	

KS A


Mittelwert	1,347	μg/kg TM
Vergleich-Stdabw.	0,469	μg/kg TM
rel. Vergleich-Stdabw.	34,84	%
untere Toleranzgrenze	0,530	μg/kg TM
obere Toleranzgrenze	2,511	μg/kg TM
Horwitz-Verhältniszahl	0,8	

KS B

2,022	μg/kg TM
0,741	μg/kg TM
36,65	%
0,745	μg/kg TM
3,877	μg/kg TM
0,9	



KS A: PCB 28 [µg/kg TM]

KS B: PCB 28 [µg/kg TM]

2.1.3 PCB 52 [μg/kg TM]

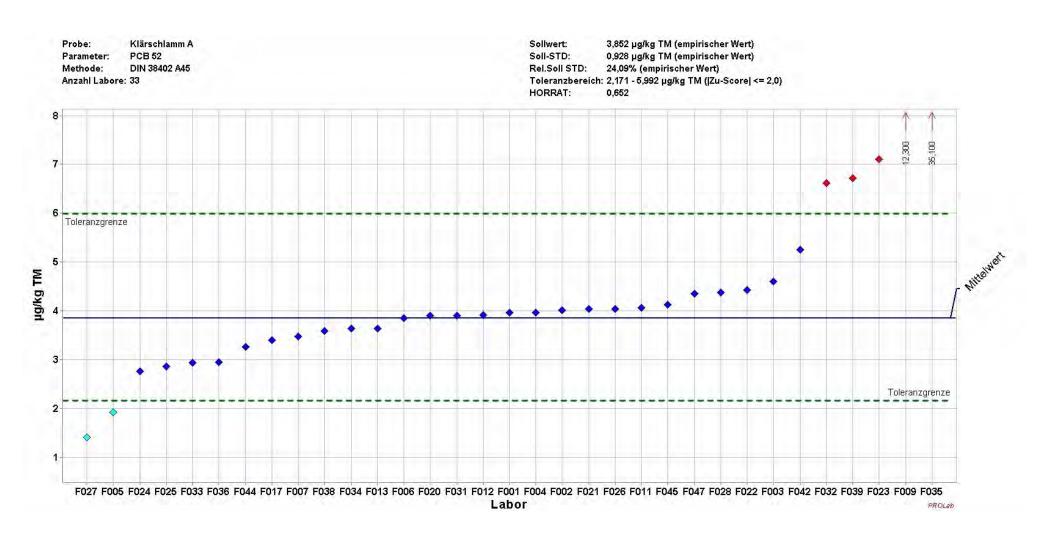
Labor	Messwert:	Zu-Score	Ausreißer
F001	3,96	0,1	
F002	4,02	0,2	
F003	4,6	0,7	
F004	3,97	0,1	
F005	1,93	-2,3	Е
F006	3,85	0,0	
F007	3,48	-0,4	
F009	12,30	7,9	Е
F011	4,06	0,2	
F012	3,91	0,1	
F013	3,64	-0,3	
F017	3,399	-0,5	
F020	3.9	0,0	
F021	4,037	0,2	
F022	4,43	0,5	
F023	7,11	3,0	Е
F024	2,77	-1,3	
F025	2,87	-1,2	
F026	4,04	0,2	
F027	1,41	-2,9	Е
F028	4,380	0,5	
F031	3,90	0,0	
F032	6,62	2,6	Е
F033	2,94	-1,1	
F034	3,638	-0,3	
F035	35,1	29,2	Е
F036	2,95	-1,1	
F038	3,59	-0,3	
F039	6,720	2,7	Е
F042	5,26	1,3	
F044	3,27	-0,7	
F045	4,13	0,3	
F047	4,35	0,5	

Messwert:	Zu-Score	Ausreißer
4,51	-0,2	
4,92	0,1	
6,7	1,2	
3,66	-0,9	
2,53	-1,8	
4,89	0,1	
4,77	0,0	
13,55	5,3	E
3,66	-0,9	
5,56	0,5	
2,40	-1,9	
4,875	0,1	
5.2	0,3	
4,946	0,1	
10,0	3,2	E
9,29	2,8	E
4,57	-0,1	
3,65	-0,9	
4,82	0,0	
1,85	-2,4	E
4,580	-0,1	
4,75	0,0	
7,73	1,8	
5,07	0,2	
4,517	-0,2	
38,3	20,3	Е
5,57	0,5	
4,37	-0,3	
2,800	-1,6	
6,84	1,3	
4,38	-0,3	
5,25	0,3	
5,50	0,5	
	4,51 4,92 6,7 3,66 2,53 4,89 4,77 13,55 3,66 5,56 2,40 4,875 5.2 4,946 10,0 9,29 4,57 3,65 4,82 1,85 4,580 4,75 7,73 5,07 4,517 38,3 5,57 4,37 2,800 6,84 4,38 5,25	4,51 -0,2 4,92 0,1 6,7 1,2 3,66 -0,9 2,53 -1,8 4,89 0,1 4,77 0,0 13,55 5,3 3,66 -0,9 5,56 0,5 2,40 -1,9 4,875 0,1 5,2 0,3 4,946 0,1 10,0 3,2 9,29 2,8 4,57 -0,1 3,65 -0,9 4,82 0,0 1,85 -2,4 4,580 -0,1 4,75 0,0 7,73 1,8 5,07 0,2 4,517 -0,2 38,3 20,3 5,57 0,5 4,37 -0,3 2,800 -1,6 6,84 1,3 4,38 -0,3 5,25 0,3

KS A

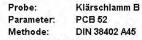
Mittelwert	3,852	μg/kg TM
Vergleich-Stdabw.	0,928	μg/kg TM
rel. Vergleich-Stdabw.	24,09	%
untere Toleranzgrenze	2,171	μg/kg TM
obere Toleranzgrenze	5,992	μg/kg TM
Horwitz-Verhältniszahl	0,7	

KS B


4,754	μg/kg TM
1,382	μg/kg TM
29,06	%
2,290	μg/kg TM
8,051	μg/kg TM
0,8	

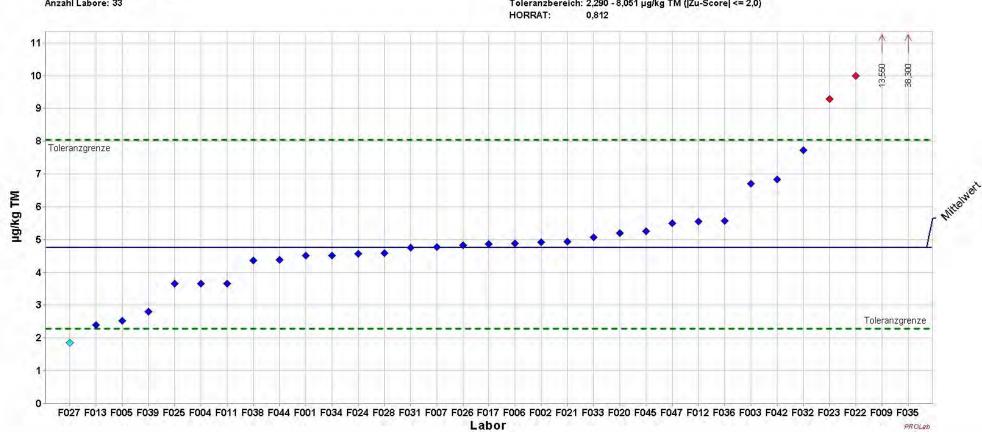
Z_u-Score zu hoch

Z_u-Score zu niedrig



KS A: PCB 52 [µg/kg TM]

KS B PCB 52 [µg/kg TM]



Anzahl Labore: 33

Sollwert: 4,754 µg/kg TM (empirischer Wert) 1,382 µg/kg TM (empirischer Wert) Soll-STD:

Rel.Soll STD: 29,06% (empirischer Wert)

Toleranzbereich: 2,290 - 8,051 µg/kg TM (|Zu-Score| <= 2,0)

2.1.4 PCB 101 [µg/kg TM]

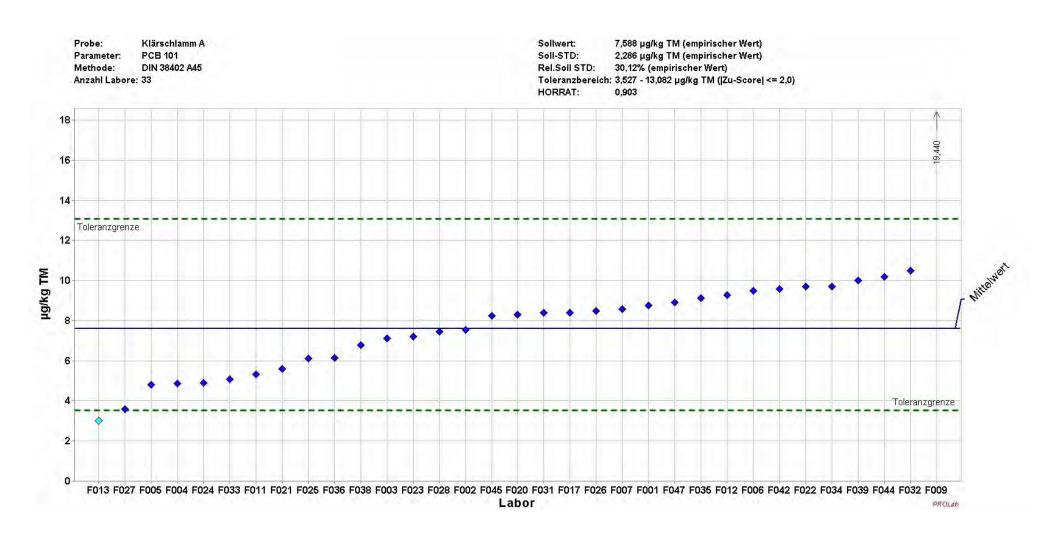
KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	8,76	0,4	
F002	7,53	0,0	
F003	7,1	-0,2	
F004	4,87	-1,3	
F005	4,81	-1,4	
F006	9,50	0,7	
F007	8,56	0,4	
F009	19,44	4,3	E
F011	5,31	-1,1	
F012	9,28	0,6	
F013	3,01	-2,3	E
F017	8,388	0,3	
F020	8.3	0,3	
F021	5,598	-1,0	
F022	9,7	0,8	
F023	7,20	-0,2	
F024	4,89	-1,3	
F025	6,12	-0,7	
F026	8,49	0,3	
F027	3,60	-2,0	
F028	7,440	-0,1	
F031	8,38	0,3	
F032	10,49	1,1	
F033	5,09	-1,2	
F034	9,702	0,8	
F035	9,12	0,6	
F036	6,14	-0,7	
F038	6,79	-0,4	
F039	10,017	0,9	
F042	9,59	0,7	
F044	10,2	1,0	
F045	8,23	0,2	
F047	8,90	0,5	

KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	7,78	0,5	
F002	6,02	-0,3	
F003	5,8	-0,5	
F004	9,10	1,1	
F005	4,42	-1,3	
F006	6,34	-0,1	
F007	7,24	0,3	
F009	31,41	11,0	E
F011	6,88	0,1	
F012	7,96	0,6	
F013	1,75	-2,9	E
F017	4,958	-1,0	
F020	6.6	0,0	
F021	5,007	-0,9	
F022	13,1	2,9	E
F023	6,21	-0,2	
F024	4,27	-1,4	
F025	4,71	-1,1	
F026	6,67	0,0	
F027	3,16	-2,0	E
F028	7,930	0,6	
F031	6,03	-0,3	
F032	6,99	0,2	
F033	6,39	-0,1	
F034	8,056	0,7	
F035	8,77	1,0	
F036	8,87	1,0	
F038	5,35	-0,7	
F039	7,231	0,3	
F042	8,37	0,8	
F044	7,35	0,3	
F045	6,44	-0,1	
F047	6,75	0,1	

VC	
NO	А

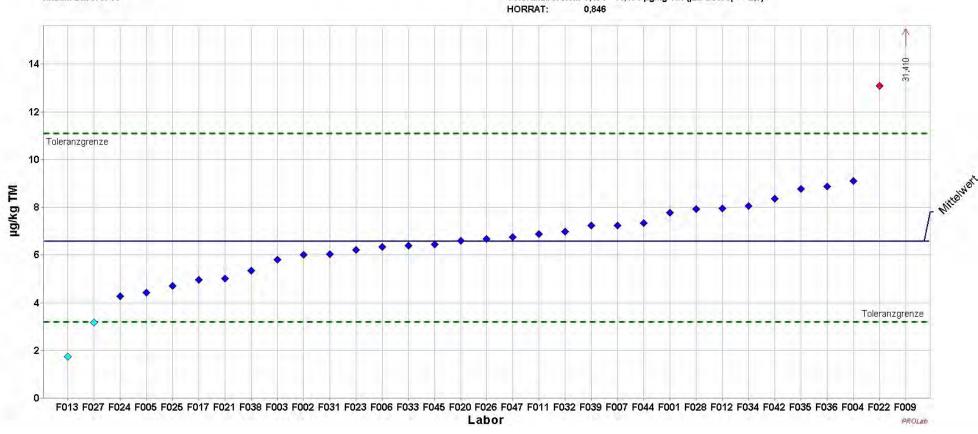

KS A	KS B				
Mittelwert	7,588	μg/kg TM		6,580	μg/kg TM
Vergleich-Stdabw.	2,286	μg/kg TM		1,897	μg/kg TM
rel. Vergleich-Stdabw.	30,12	%		28,84	%
untere Toleranzgrenze	3,527	μg/kg TM		3,194	μg/kg TM
obere Toleranzgrenze	13,082	μg/kg TM		11,101	μg/kg TM
Horwitz-Verhältniszahl	0,9			0,8	

Zu-Score zu hoch

Z_u-Score zu niedrig

KS A: PCB 101 [µg/kg TM]

KS B: PCB 101 [µg/kg TM]



Anzahl Labore: 33

Sollwert: 6,580 µg/kg TM (empirischer Wert)
Soll-STD: 1,897 µg/kg TM (empirischer Wert)

Rel.Soll STD: 28,84% (empirischer Wert)

Toleranzbereich: 3,194 - 11,101 µg/kg TM (|Zu-Score| <= 2,0)

2.1.5 PCB 138 [μg/kg TM]

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	15,6	0,2	
F002	13,2	-0,5	
F003	12,8	-0,6	
F004	12,9	-0,6	
F005	11,1	-1,1	
F006	21,0	1,6	
F007	16,0	0,3	
F009	15,73	0,3	
F011	7,19	-2,4	E
F012	19,4	1,2	
F013	8,70	-1,9	
F017	26,275	2,9	E
F020	13.7	-0,3	
F021	12,94	-0,5	
F022	20,9	1,6	
F023	15,8	0,3	
F024	12,8	-0,6	
F025	14,1	-0,2	
F026	14,5	-0,1	
F027	12,1	-0,8	
F028	13,520	-0,4	
F031	14,5	-0,1	
F032	20,57	1,5	
F033	8,20	-2,1	E
F034	17,149	0,6	
F035	23,1	2,1	E
F036	11,3	-1,1	
F038	12,0	-0,8	
F039	13,977	-0,2	
F042	21,3	1,7	
F044	15,3	0,2	
F045	13,1	-0,5	
F047	14,0	-0,2	

KS B

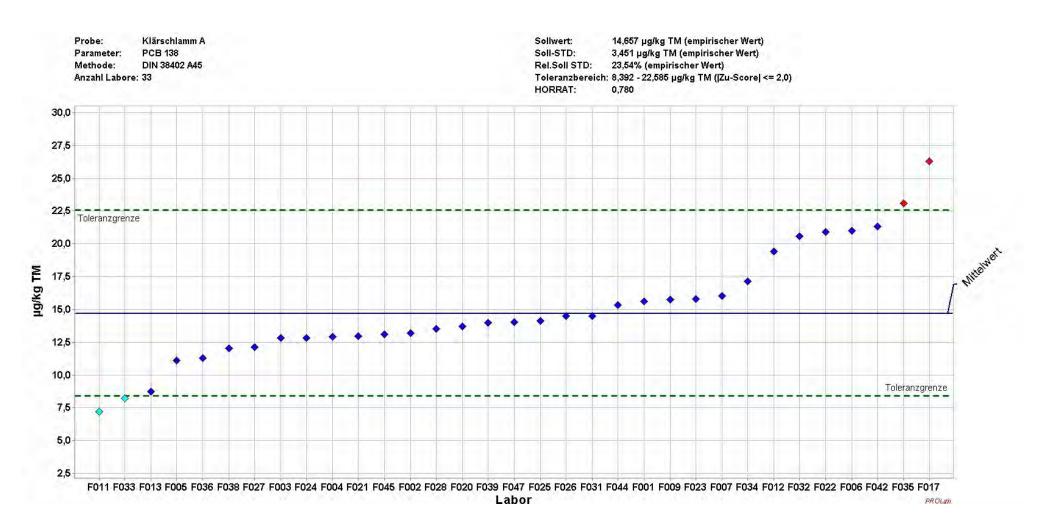
NO D			
Labor	Messwert:	Zu-Score	Ausreißer
F001	6,96	-0,4	
F002	6,86	-0,4	
F003	7,4	-0,1	
F004	7,56	0,0	
F005	5,75	-1,2	
F006	8,42	0,5	
F007	9,12	0,9	
F009	35,29	15,0	Е
F011	16,2	4,7	Е
F012	9,77	1,2	
F013	5,32	-1,5	
F017	8,189	0,4	
F020	7.0	-0,3	
F021	7,259	-0,2	
F022	17,6	5,4	Е
F023	9,81	1,2	
F024	6,84	-0,4	
F025	6,52	-0,7	
F026	6,71	-0,5	
F027	7,25	-0,2	
F028	8,770	0,7	
F031	6,15	-0,9	
F032	8,37	0,5	
F033	5,83	-1,1	
F034	9,932	1,3	
F035	11,3	2,1	Е
F036	6,42	-0,7	
F038	5,96	-1,0	
F039	7,409	-0,1	
F042	9,12	0,9	
F044	6,73	-0,5	
F045	6,64	-0,6	
F047	6,95	-0,4	

KS A

Mittelwert	14,657	μg/kg TM
Vergleich-Stdabw.	3,451	μg/kg TM
rel. Vergleich-Stdabw.	23,54	%
untere Toleranzgrenze	8,392	μg/kg TM
obere Toleranzgrenze	22,585	μg/kg TM
Horwitz-Verhältniszahl	0,8	

Z_u-Score zu hoch

Z_u-Score zu niedrig


KS B

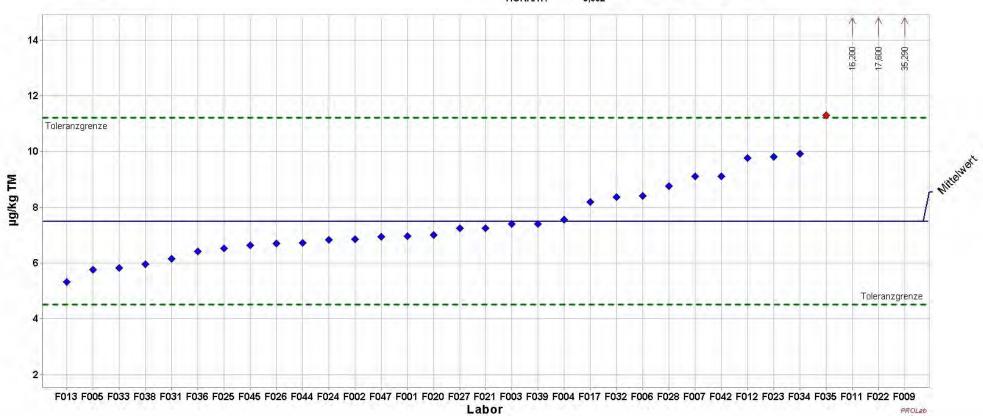
7,499	μg/kg TM
1,633	μg/kg TM
21,78	%
4,516	μg/kg TM
11,207	μg/kg TM
0,7	

00

KS A: PCB 138 [µg/kg TM]

KS B: PCB 138 [µg/kg TM]

Klärschlamm B Probe: Parameter: PCB 138 Methode: DIN 38402 A45


Anzahl Labore: 33

Sollwert: 7,499 µg/kg TM (empirischer Wert) Soll-STD: 1,633 µg/kg TM (empirischer Wert)

Rel.Soll STD: 21,78% (empirischer Wert)

Toleranzbereich: 4,516 - 11,207 µg/kg TM (|Zu-Score| <= 2,0)

HORRAT:

2.1.6 PCB 153 [μg/kg TM]

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	16,4	0,2	
F002	16,6	0,3	
F003	14,0	-0,5	
F004	17,7	0,5	
F005	10,2	-1,7	
F006	20,9	1,3	
F007	13,8	-0,6	
F009	18,30	0,7	
F011	7,13	-2,7	E
F012	17,7	0,5	
F013	17,0	0,4	
F017	21,644	1,5	
F020	16.3	0,2	
F021	11,23	-1,4	
F022	17,9	0,6	
F023	16,1	0,1	
F024	11,0	-1,4	
F025	12,5	-1,0	
F026	13,9	-0,5	
F027	9,99	-1,8	
F028	16,650	0,3	
F031	17,7	0,5	
F032	17,20	0,4	
F033	9,06	-2,1	E
F034	20,512	1,3	
F035	12,6	-0,9	
F036	13,2	-0,8	
F038	16,9	0,3	
F039	14,195	-0,4	
F042	26,3	2,7	Е
F044	16,9	0,3	
F045	15,6	0,0	
F047	18,5	0,7	

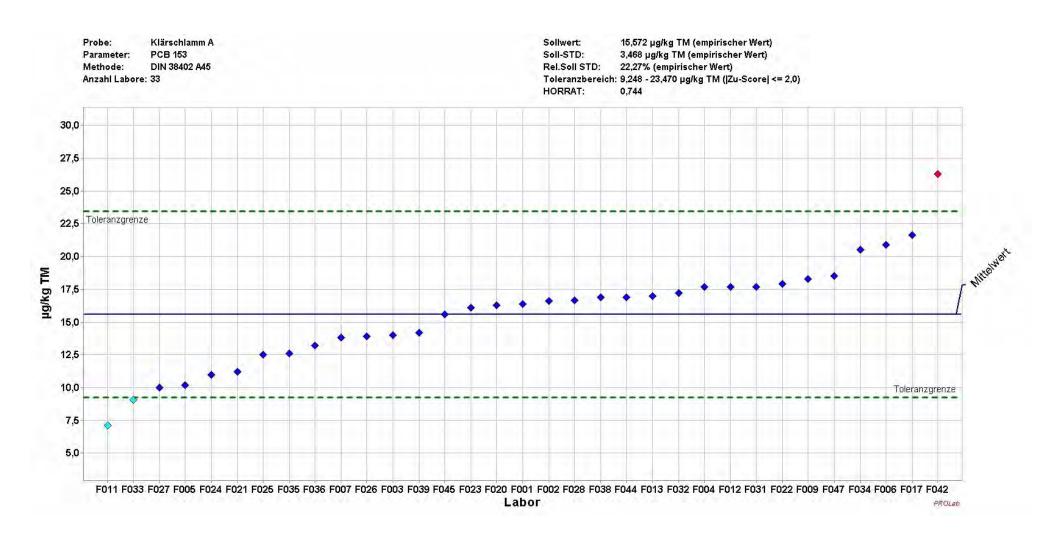
KS A

Mittelwert	15,572	μg/kg TM
Vergleich-Stdabw.	3,468	μg/kg TM
rel. Vergleich-Stdabw.	22,27	%
untere Toleranzgrenze	9,248	μg/kg TM
obere Toleranzgrenze	23,470	μg/kg TM
Horwitz-Verhältniszahl	0,7	

Z_u-Score zu hoch

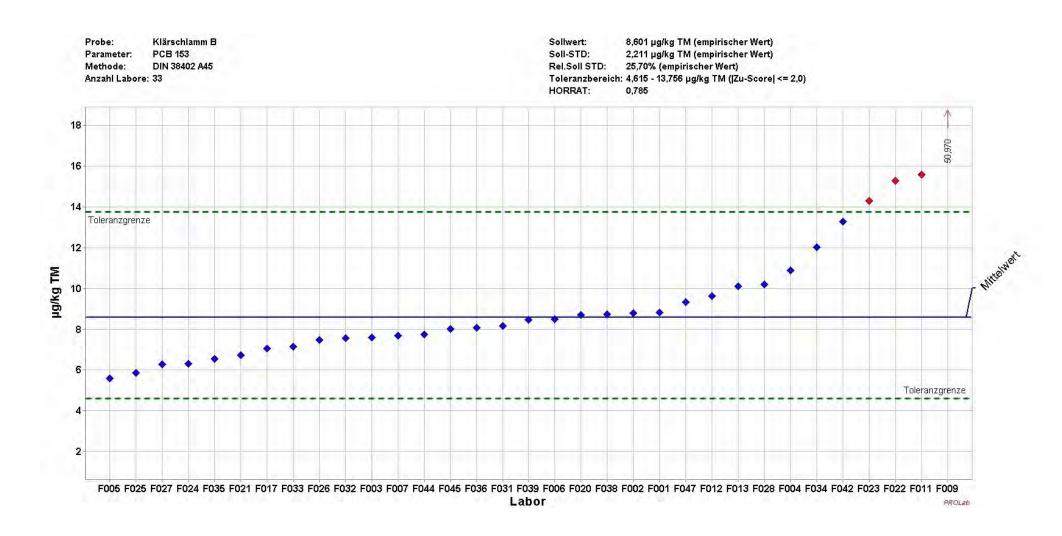
Z_u-Score zu niedrig

KS B


Labor	Messwert:	Zu-Score	Ausreißer			
F001	8,82	0,1				
F002	8,79	0,1				
F003	7,6	-0,5				
F004	10,9	0,9				
F005	5,60	-1,5				
F006	8,50	-0,1				
F007	7,69	-0,5				
F009	50,97	16,4	Е			
F011	15,6	2,7	Е			
F012	9,62	0,4				
F013	10,1	0,6				
F017	7,052	-0,8				
F020	8.7	0,0				
F021	6,721	-0,9				
F022	15,3	2,6	Е			
F023	14,3	2,2	Е			
F024	6,32	-1,1				
F025	5,86	-1,4				
F026	7,48	-0,6				
F027	6,28	-1,2				
F028	10,210	0,6				
F031	8,17	-0,2				
F032	7,56	-0,5				
F033	7,15	-0,7				
F034	12,016	1,3				
F035	6,56	-1,0				
F036	8,09	-0,3				
F038	8,75	0,1				
F039	8,465	-0,1				
F042	13,3	1,8				
F044	7,74	-0,4				
F045	8,01	-0,3				
F047	9,35	0,3				

KS B

8,601	μg/kg TM
2,211	μg/kg TM
25,70	%
4,615	μg/kg TM
13,756	μg/kg TM
0,8	



KS A: PCB 153 [µg/kg TM]

KS B: PCB 153 [µg/kg TM]

2.1.7 PCB 180 [μg/kg TM]

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	13,8	0,5	
F002	13,9	0,5	
F003	9,3	-1,2	
F004	10,5	-0,7	
F005	9,75	-1,0	
F006	17,3	1,7	
F007	11,7	-0,2	
F009	14,49	0,7	
F011	4,89	-3,0	E
F012	13,7	0,5	
F013	10,2	-0,9	
F017	14,747	0,8	
F020	13.9	0,5	
F021	8,836	-1,4	
F022	15,6	1,1	
F023	14,2	0,6	
F024	9,90	-1,0	
F025	10,6	-0,7	
F026	12,9	0,2	
F027	8,84	-1,4	
F028	11,190	-0,4	
F031	13,8	0,5	
F032	12,44	0,1	
F033	8,07	-1,7	
F034	15,295	1,0	
F035	13,6	0,4	
F036	8,31	-1,6	
F038	11,3	-0,4	
F039	10,621	-0,7	
F042	17,6	1,8	
F044	14,8	0,8	
F045	13,4	0,4	
F047	14,5	0,7	

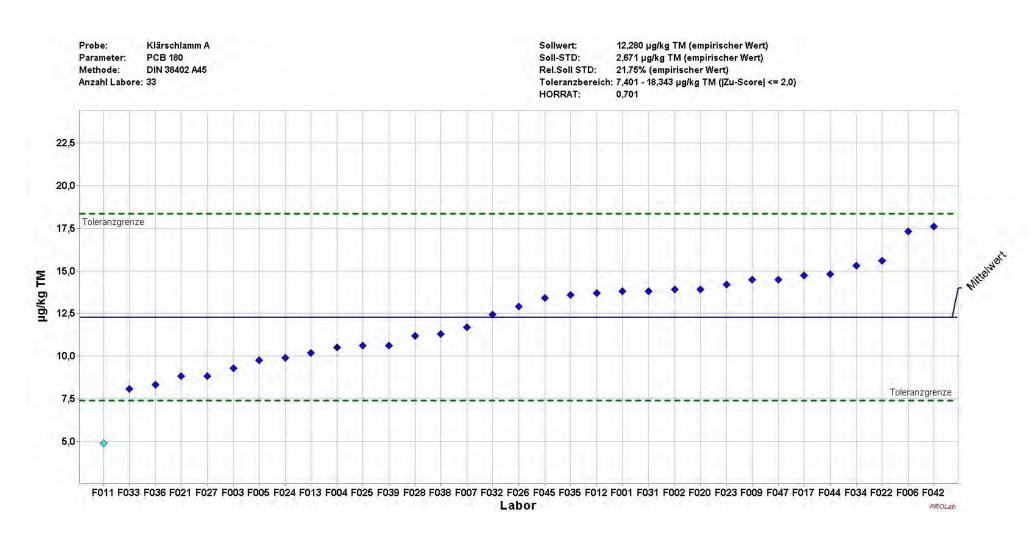
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	5,19	0,0	
F002	5,46	0,2	
F003	3,4	-1,4	
F004	8,01	1,7	
F005	4,25	-0,7	
F006	5,27	0,0	
F007	4,76	-0,3	
F009	34,65	17,3	Е
F011	13,3	4,8	Е
F012	5,11	-0,1	
F013	4,81	-0,3	
F017	4,058	-0,9	
F020	5.6	0,2	
F021	3,441	-1,4	
F022	10,4	3,1	Е
F023	7,92	1,6	
F024	4,24	-0,7	
F025	3,68	-1,2	
F026	4,60	-0,5	
F027	3,98	-0,9	
F028	6,540	0,8	
F031	4,72	-0,4	
F032	3,59	-1,2	
F033	4,94	-0,2	
F034	6,851	1,0	
F035	4,96	-0,2	
F036	5,91	0,4	
F038	4,17	-0,8	
F039	9,337	2,4	Е
F042	7,41	1,3	
F044	4,99	-0,2	
F045	5,09	-0,1	
F047	5,35	0,1	

KS A

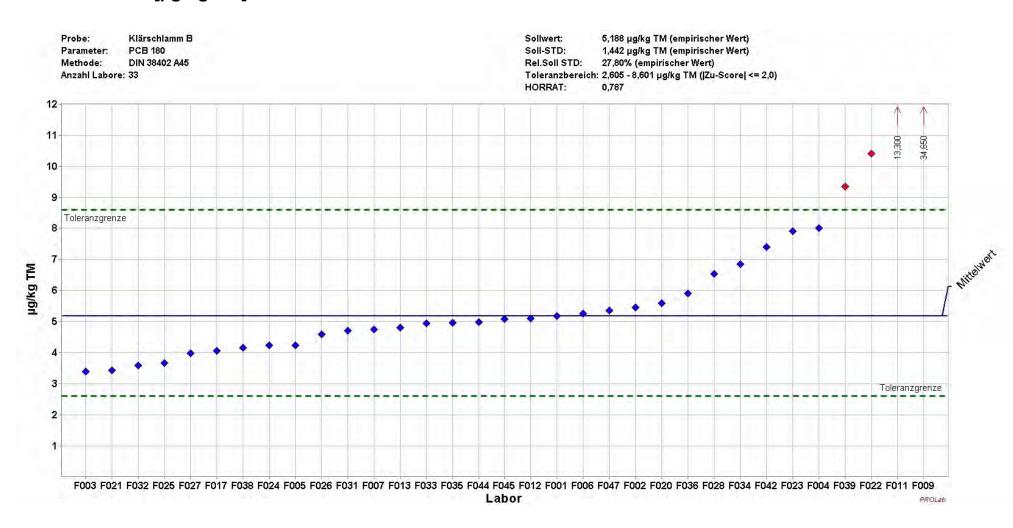
Mittelwert	12,280	μg/kg TM
Vergleich-Stdabw.	2,671	μg/kg TM
rel. Vergleich-Stdabw.	21,75	%
untere Toleranzgrenze	7,401	μg/kg TM
obere Toleranzgrenze	18,343	μg/kg TM
Horwitz-Verhältniszahl	0,7	

KS B


5,188	μg/kg TM
1,442	μg/kg TM
27,80	%
2,605	μg/kg TM
8,601	μg/kg TM
0,8	

Zu-Score zu hoch

Z_u-Score zu niedrig



KS A: PCB 180 [µg/kg TM]

KS B: PCB 180 [µg/kg TM]

Laborbewertung FMA 1.5 2.1.8

	Parameter													
Labor	PC	B 28	РС	B 52	PCB	PCB 101 PCB 138 PCB 153 PCB 180								
	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	F1	F2
F001													0	0
F002													0	0
F003													0	0
F004	> Zu	> Zu											2	1
F005			< Zu										1	0
F006													0	0
F007													0	0
F009	> Zu	> Zu	> Zu	> Zu	> Zu	> Zu		> Zu		> Zu		> Zu	9	3
F011								> Zu	< Zu	> Zu		> Zu	6	3
F012	< Zu												1	0
F013					< Zu	< Zu							2	1
F017							> Zu						1	0
F020													0	0
F021													0	0
F022				> Zu		> Zu		> Zu		> Zu		> Zu	5	0
F023	> Zu	> Zu	> Zu	> Zu						> Zu			5	2
F024	< Zu												1	0
F025													0	0
F026													0	0
F027			< Zu	< Zu		< Zu							3	1
F028													0	0
F031													0	0
F032			> Zu										1	0
F033							< Zu		< Zu				2	0
F034													0	0
F035			> Zu	> Zu			> Zu	> Zu					4	2
F036	> Zu	> Zu											2	1
F038													0	0
F039	> Zu		> Zu									> Zu	3	0
F042									> Zu				1	0
F044													0	0
F045													0	0
F047													0	0

Zu-Score zu hoch

F1 = Fehler bei Proben-Parameter-Kombination (rot= nicht bestanden, grün=bestanden) F2 = Fehler bei Parametern (rot= nicht bestanden, grün=bestanden)

Z_u-Score zu niedrig = Fehler Ε

= Fehler bei der Beachtung der Mindestbestimmungsgrenze bei der Werteabgabe oder keine Abgabe eines Wertes

2.2 FMA 1.6 Polychlorierte Dibenzodioxine/-furane und dIPCB

2.2.1 Merkmalsübersicht

Merkmal Dioxine	Einheit	Probe	Mittelwert	Vergleichsstandard- abweichung	untere Toleranzgrenze	obere Toleranzgrenze
D48 – 2,3,7,8 – Tetra CDD	ng/kg TM	KS A ²⁾ KS B ²⁾	-	-		-
D54 - 1,2,3,7,8 - Penta CDD	ng/kg TM	KS A ²⁾ KS B ²⁾	-		- -	- -
D66 - 1,2,3,4,7,8 - Hexa CDD	ng/kg TM	KS A ²⁾ KS B ¹⁾	- 0,675	- 0,203	- 0,315	- 1,163
D67 – 1,2,3,6,7,8 – Hexa CDD	ng/kg TM	KS A KS B	2,109 1,866	0,306 0,287	1,536 1,330	2,771 2,491
D70 - 1,2,3,7,8,9 - Hexa CDD	ng/kg TM	KS A ¹⁾ KS B ¹⁾	1,212 1,111	0,148 0,241	0,932 0,670	1,529 1,659
D73 - 1,2,3,4,6,7,8 - Hepta CDD	ng/kg TM	KS A ³⁾ KS B	47,734 44,353	5,250 5,367	37,751 34,193	58,878 55,820
D75 – 1,2,3,4,5,6,7,8 – Octa CDD	ng/kg TM	KS A ³⁾ KS B ³⁾	338,753 319,260	37,263 35,119	267,891 252,475	417,848 393,803
Toxizitätsäquivalent (ITE)	ng/kg TM	KS A KS B	3,421 2,519	0,530 0,493	2,431 1,613	4,577 3,622

⁽¹⁾ Bei diesen Parameter-Proben-Kombinationen lag die untere Toleranzgrenze unterhalb der Bestimmungsgrenze

⁽²⁾ Da sich bei Sichtung der Werte ergab, dass mehr als 25% der abgegebenen Werte nicht quantifizierbar waren, wurde an dieser Proben-Parameter-Kombination keine Auswertung und keine Fehlerbewertung vorgenommen.

⁽³⁾ Da bei diesen Analysen die Horwitz-Verhältniszahl nach Thompson weniger als 0,5 bzw. mehr als 2.0 betrug, wurden Soll-Standardabweichung und die Toleranzgrenzen aushend von einer Horwitz-Verhältniszahl nach Thompson von 0,5 bzw. 2,0 berechnet (vgl. Kap. 1.4)

Merkmal Furane	Einheit	Probe	Mittelwert	Vergleichsstandard -abweichung	untere Toleranzgrenze	obere Toleranzgrenze
F83 – 2,3,7,8 – Tetra CDF	ng/kg TM	KS A KS B	2,730 1,603	0,433 0,309	1,921 1,034	3,677 2,294
F94 - 1,2,3,7,8 - Penta CDF	ng/kg TM	KS A KS B ¹⁾	1,719 0,830	0,300 0,306	1,163 0,303	2,380 1,598
F114 – 2,3,4,7,8 – Penta CDF	ng/kg TM	KS A KS B	2,428 1,314	0,382 0,149	1,715 1,031	3,263 1,632
F118 – 1,2,3,4,7,8 – Hexa CDF	ng/kg TM	KS A KS B ¹⁾	2,589 1,365	0,292 0,286	2,035 0,842	3,209 2,010
F121 – 1,2,3,6,7,8 – Hexa CDF	ng/kg TM	KS A ¹⁾ KS B ¹⁾	1,843 1,019	0,499 0,217	0,947 0,621	3,019 1,511
F124 – 1,2,3,7,8,9 – Hexa CDF	ng/kg TM	KS A ²⁾ KS B ²⁾	-	-	- -	- -
F130 – 2,3,4,6,7,8 – Hexa CDF	ng/kg TM	KS A KS B ¹⁾	1,839 0,968	0,376 0,278	1,149 0,471	2,685 1,631
F131 – 1,2,3,4,6,7,8 – Hepta CDF	ng/kg TM	KS A KS B ³⁾	14,672 7,631	1,518 0,839	11,776 6,036	17,883 9,412
F134 – 1,2,3,4,7,8,9 – Hepta CDF	ng/kg TM	KS A ¹⁾ KS B ¹⁾	1,316 0,671	0,232 0,148	0,886 0,400	1,830 1,008
F135 – 1,2,3,4,5,6,7,8 - Octa CDF	ng/kg TM	KS A KS B	26,987 16,937	5,548 2,374	16,813 12,477	39,480 22,068

⁽¹⁾ Bei diesen Parameter-Proben-Kombinationen lag die untere Toleranzgrenze unterhalb der Bestimmungsgrenze

⁽²⁾ Da sich bei Sichtung der Werte ergab, dass mehr als 25% der abgegebenen Werte nicht quantifizierbar waren, wurde an dieser Proben-Parameter-Kombination keine Auswertung und keine Fehlerbewertung vorgenommen.

⁽³⁾ Da bei diesen Analysen die Horwitz-Verhältniszahl nach Thompson weniger als 0,5 bzw. mehr als 2.0 betrug, wurden Soll-Standardabweichung und die Toleranzgrenzen aushend von einer Horwitz-Verhältniszahl nach Thompson von 0,5 bzw. 2,0 berechnet (vgl. Kap. 1.4)

Merkmal dIPCB	Einheit	Probe	Mittelwert	Vergleichs- Stdabw.	untere Toleranzgrenze	obere Toleranzgrenze
PCB 77	ng/kg TM	KS A	305,308	56,588	200,790	431,073
1 05 11	rig/kg rivi	KS B	Stdabw. 1 305,308 56,588 189,096 28,849 8,121 2,130 6,166 1,426 1107,521 114,746 925,618 92,094 76,358 16,760 69,009 14,546 3551,184 443,829 2819,250 488,212 59,813 16,055 47,016 9,266 108,267 13,613 16,558 3,684 1543,910 262,192 769,895 139,938 233,417 30,524 103,701 11,010	135,161	251,908	
PCB 81	ng/kg TM	KS A		,	4,286	13,106
FCB01	Tig/kg Tivi	KS B	6,166	1,426	3,572	9,434
PCB 105	na/ka TM	KS A	1107,521	114,746	888,726	1350,182
PCB 103	ng/kg TM	KS B	925,618	92,094	749,709	1119,915
PCB 114	na/ka TM	KS A	76,358	16,760	45,766	114,447
PCB 114	ng/kg TM	KS B	69,009	14,546	42,379	101,877
DOD 440		KS A	3551,184	443,829	2712,338	4501,580
PCB 118	ng/kg TM	KS B	2819,250	488,212	1913,533	3895,933
DOD 400		KS A	59,813	16,055	30,969	97,540
PCB 123	ng/kg TM	KS B	59,813 16,055	29,972	67,765	
DOD 400		KS A	108,267	13,613	82,547	137,430
PCB 126	ng/kg TM	KS B 2819,250 488,21 KS A 59,813 16,058 KS B 47,016 9,266 KS A 108,267 13,613 KS B 16,558 3,684 KS A 1543,910 262,19	3,684	9,841	24,947	
DCD 456	na/ka TM	KS A	1543,910	262,192	1056,898	2120,923
PCB 156	ng/kg TM	KS B	769,895	139,938	511,098	1080,191
DOD 457		KS A	233,417	30,524	175,860	299,006
PCB 157	ng/kg TM	KS B	103,701	11,010	82,729	127,020
DOD 467		KS A	808,709	149,880	531,882	1141,809
PCB 167	ng/kg TM	KS B	189,096 28,849 8,121 2,130 6,166 1,426 1107,521 114,746 925,618 92,094 76,358 16,760 69,009 14,546 3551,184 443,829 2819,250 488,212 59,813 16,055 47,016 9,266 108,267 13,613 16,558 3,684 1543,910 262,192 769,895 139,938 233,417 30,524 103,701 11,010 808,709 149,880 353,262 66,172 18,265 3,662 2,811 0,803 315,601 53,259 124,634 16,600 11,609 1,266	231,129	500,513	
DOD 400		KS A	18,265	3,662	11,538	26,483
PCB 169	ng/kg TM	KS B	2,811	0,803	1,376	4,721
DOD 400		KS A	315,601	53,259	216,635	432,733
PCB 189	ng/kg TM	KS B	•	· ·	93,363	160,356
DOD TE (Taximitäta ä avvivala at 41 DOD)	na/ka TN4	KS A	11,609	1,266	9,200	14,294
PCB TE (Toxizitätsäquivalent dl-PCB)	ng/kg TM	KS B	1,953	0,384	1,245	2,814

2.2.2 D48 – 2,3,7,8 – Tetra CDD [ng/kg TM]

Bei Klärschlamm A und B sind mehr als 25% der abgegebenen Werte nicht quantifizierbar, deshalb wurde an diesen Proben-Parameter-Kombinationen keine Auswertung und keine Fehlerbewertung vorgenommen.

2.2.3 D54 – 1,2,3,7,8 – Penta CDD [ng/kg TM]

Bei Klärschlamm A und B sind mehr als 25% der abgegebenen Werte nicht quantifizierbar, deshalb wurde an diesen Proben-Parameter-Kombinationen keine Auswertung und keine Fehlerbewertung vorgenommen.

2.2.4 D66 - 1,2,3,4,7,8 - Hexa CDD [ng/kg TM]

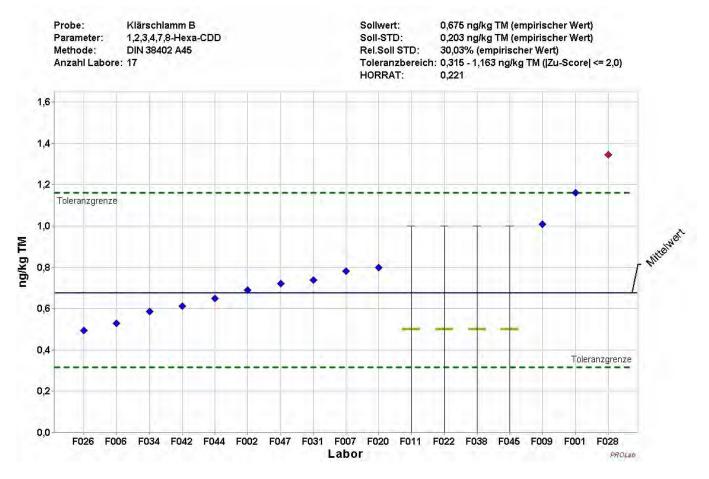
Bei Klärschlamm A waren mehr als 25% der abgegebenen Werte nicht quantifizierbar, deshalb wurde an dieser Proben-Parameter-Kombination keine Auswertung und keine Fehlerbewertung vorgenommen. Bei Klärschlamm B lag die untere Toleranzgrenze unterhalb der Bestimmungsgrenze. Der Wert wurde ausgewertet und in die Bewertung einbezogen. (vgl. Anmerkung Kapitel 1.4)

KS A

KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	1,16	2,0	
F002	0,690	0,1	
F006	0,53	-0,8	
F007	0,783	0,4	
F009	1,009	1,4	
F011	<1	-1,0	
F020	0.8	0,5	
F022	<1	-1,0	
F026	0,493	-1,0	
F028	1,346	2,8	E
F031	0,739	0,3	
F034	0,586	-0,5	
F038	<1	-1,0	
F042	0,613	-0,3	
F044	0,651	-0,1	
F045	<1	-1,0	
F047	0,720	0,2	

KS A


Mittelwert	ng/kg TM
Vergleich-Stdabw.	ng/kg TM
rel. Vergleich-Stdabw.	%
untere Toleranzgrenze	ng/kg TM
obere Toleranzgrenze	ng/kg TM
Horwitz-Verhältniszahl	n.Thomp.

KS B

0,675	ng/kg TM
0,203	ng/kg TM
30,03	%
0,315	ng/kg TM
1,163	ng/kg TM
1,4	n.Thomp.

KS B: D66 - 1,2,3,4,7,8 - Hexa CDD [ng/kg TM]

2.2.5 D67 – 1,2,3,6,7,8 – Hexa CDD [ng/kg TM]

KS A

NO A			
Labor	Messwert:	Zu-Score	Ausreißer
F001	2,26	0,5	
F002	2,35	0,7	
F006	2,28	0,5	
F007	2,35	0,7	
F009	10,59	25,6	Е
F011	1,90	-0,7	
F020	2	-0,4	
F022	1,75	-1,3	
F026	1,91	-0,7	
F028	2,122	0,0	
F031	2,61	1,5	
F034	2,153	0,1	
F038	1,81	-1,0	
F042	2,13	0,1	
F044	2,18	0,2	
F045	2,08	-0,1	
F047	1,90	-0,7	

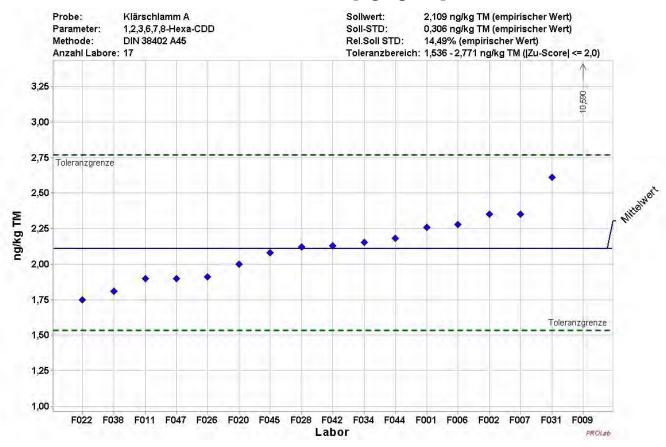
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	1,92	0,2	
F002	2,09	0,7	
F006	1,75	-0,4	
F007	1,97	0,3	
F009	3,011	3,7	Е
F011	2,45	1,9	
F020	1.8	-0,2	
F022	1,62	-0,9	
F026	1,56	-1,1	
F028	1,715	-0,6	
F031	2,47	1,9	
F034	1,771	-0,4	
F038	1,58	-1,1	
F042	1,89	0,1	
F044	1,76	-0,4	
F045	1,79	-0,3	
F047	1,90	0,1	

KS A

Mittelwert	2,109	ng/kg TM
Vergleich-Stdabw.	0,306	ng/kg TM
rel. Vergleich-Stdabw.	14,49	%
untere Toleranzgrenze	1,536	ng/kg TM
obere Toleranzgrenze	2,771	ng/kg TM
Horwitz-Verhältniszahl	0,7	n.Thomp.

KS B


1,866	ng/kg TM
0,287	ng/kg TM
15,37	%
1,330	ng/kg TM
2,491	ng/kg TM
0,7	n.Thomp.

Z_u-Score zu hoch


Z_u-Score zu niedrig

KS A: D67 – 1,2,3,6,7,8 – Hexa CDD [ng/kg TM]

KS B: D67 - 1,2,3,6,7,8 - Hexa CDD [ng/kg TM]

2.2.6 D70 - 1,2,3,7,8,9 - Hexa CDD [ng/kg TM]

Bei Klärschlamm A und B lag die untere Toleranzgrenze unterhalb der Bestimmungsgrenze. Die Werte wurde ausgewertet und in die Bewertung einbezogen. (vgl. Anmerkung Kapitel 1.4)

KS A

ßer
E
E

KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	1,41	1,09098	
F002	1,27	0,5798	
F006	1,10	-0,05084	
F007	1,25	0,50677	
F009	1,651	1,97094	
F011	1,34	0,83539	
F020	1	-0,50443	
F022	1,11	-0,00548	
F026	0,85	-1,1848	
F028	1,194	0,3023	
F031	1,19	0,28769	
F034	1,115	0,01384	
F038	<1	-2,77235	Е
F042	1,05	-0,27763	
F044	1,04	-0,32299	
F045	<1	-2,77235	Е
F047	1,00	-0,50443	

KS A

Mittelwert	1,212	ng/kg TM
Vergleich-Stdabw.	0,148	ng/kg TM
rel. Vergleich-Stdabw.	12,22	%
untere Toleranzgrenze	0,932	ng/kg TM
obere Toleranzgrenze	1,529	ng/kg TM
Horwitz-Verhältniszahl	0,6	n.Thomp.

KS B

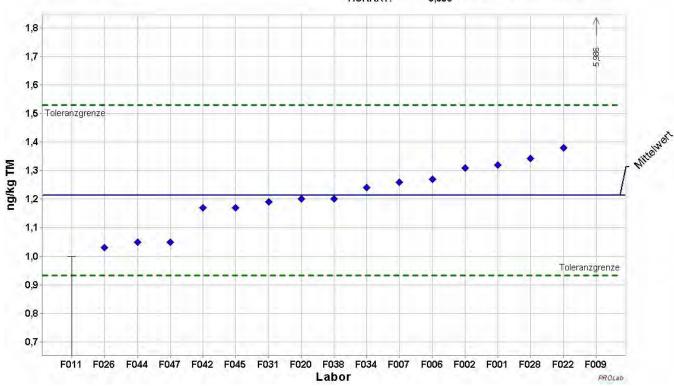
1,111	ng/kg TM
0,241	ng/kg TM
21,72	%
0,670	ng/kg TM
1,659	ng/kg TM
1,0	n.Thomp.

Zu-Score zu hoch

Z_u-Score zu niedrig

KS A: D70 - 1,2,3,7,8,9 - Hexa CDD [ng/kg TM]

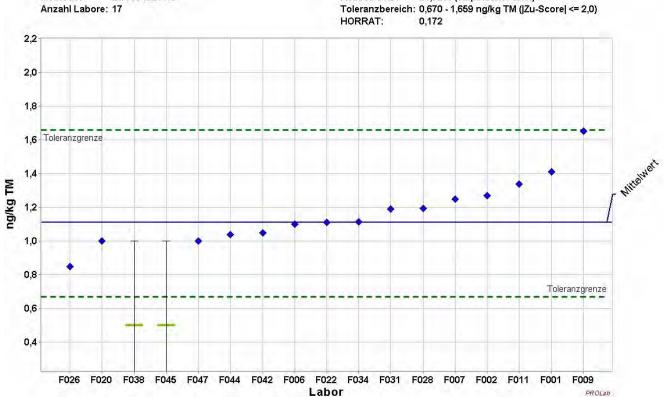
Klärschlamm A Probe: 1,2,3,7,8,9-Hexa-CDD Parameter: Methode: DIN 38402 A45


Anzahl Labore: 17

Sollwert: 1,212 ng/kg TM (empirischer Wert) 0,148 ng/kg TM (empirischer Wert) Soll-STD:

Rel.Soll STD: 12,22% (empirischer Wert)

Toleranzbereich: 0,932 - 1,529 ng/kg TM (|Zu-Score| <= 2,0)


HORRAT: 0,098

KS B: D70 - 1,2,3,7,8,9 - Hexa CDD [ng/kg TM]

Probe: Klärschlamm B Parameter: 1,2,3,7,8,9-Hexa-CDD Methode: DIN 38402 A45

Sollwert: 1,111 ng/kg TM (empirischer Wert) Soll-STD: 0,241 ng/kg TM (empirischer Wert) Rel.Soll STD: 21,72% (empirischer Wert)

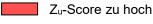
2.2.7 D73 – 1,2,3,4,6,7,8 – Hepta CDD [ng/kg TM]

Da bei Klärschlamm A der Horrat nach Thompson bei 0,31 lag, wurde Standardabweichung und Toleranzgrenze mit Hilfe der Horwitz-Verhältniszahl nach Thompson von 0,5 berechnet.

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	48,3	0,1	
F002	47,8	0,0	
F006	52,3	0,8	
F007	54,9	1,3	
F009	106,6	10,6	E
F011	47,3	-0,1	
F020	46.9	-0,2	
F022	42,5	-1,0	
F026	43,8	-0,8	
F028	49,277	0,3	
F031	48,8	0,2	
F034	50,105	0,4	
F038	45,3	-0,5	
F042	46,5	-0,2	
F044	48,0	0,0	
F045	45,9	-0,4	
F047	48,0	0,0	

KS B


NO D				
Labor	Messwert:	Zu-Score	Ausreißer	
F001	49,3	0,9		
F002	46,1	0,3		
F006	47,5	0,5		
F007	47,0	0,5		
F009	34,941	-1,9		
F011	51,2	1,2		
F020	48.4	0,7		
F022	40,0	-0,9		
F026	38,9	-1,1		
F028	45,072	0,1		
F031	50,8	1,1		
F034	47,231	0,5		
F038	41,8	-0,5		
F042	34,8	-1,9		
F044	42,4	-0,4		
F045	41,7	-0,5		
F047	44,0	-0,1		

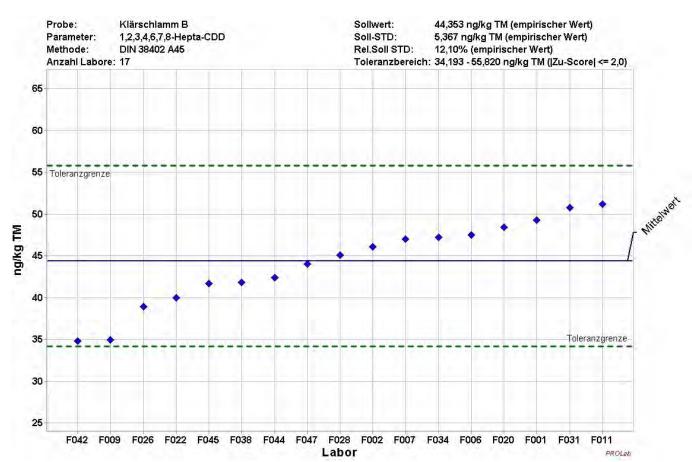
KS A

Mittelwert	47,734	ng/kg TM
Vergleich-Stdabw.	3,209	ng/kg TM
Soll-Stdabw	5,250	ng/kg TM *)
rel. Vergleich-Stdabw.	6,72	%
Rel. Soll-Stdabw.	11,0	% *)
untere Toleranzgrenze	37,751	ng/kg TM
obere Toleranzgrenze	58,878	ng/kg TM
Horwitz-Verhältniszahl	0,5	n.Thomp.

KS B

44,353	ng/kg TM
5,367	ng/kg TM
-	ng/kg TM *)
12,10	%
-	% *)
34,193	ng/kg TM
55,820	ng/kg TM
0,6	n.Thomp.

Z_u-Score zu niedrig


^{*} vergl. Abs. 1.4

KS A: D73 – 1,2,3,4,6,7,8 – Hepta CDD [ng/kg TM]

KS B: D73 – 1,2,3,4,6,7,8 – Hepta CDD [ng/kg TM]

2.2.8 D75 – 1,2,3,4,5,6,7,8 – Octa CDD [ng/kg TM]

Da bei Klärschlamm A und B der Horrat nach Thompson bei 0,36 lag, wurde Standardabweichung und Toleranzgrenze mit Hilfe der Horwitz-Verhältniszahl nach Thompson von 0,5 berechnet.

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	343	0,1	
F002	342	0,1	
F006	372	0,8	
F007	430	2,3	Е
F009	564,1	5,7	Е
F011	343	0,1	
F020	340	0,0	
F022	317	-0,6	
F026	315	-0,7	
F028	334,188	-0,1	
F031	353	0,4	
F034	369,989	0,8	
F038	335	-0,1	
F042	303	-1,0	
F044	335	-0,1	
F045	321	-0,5	
F047	330	-0,2	

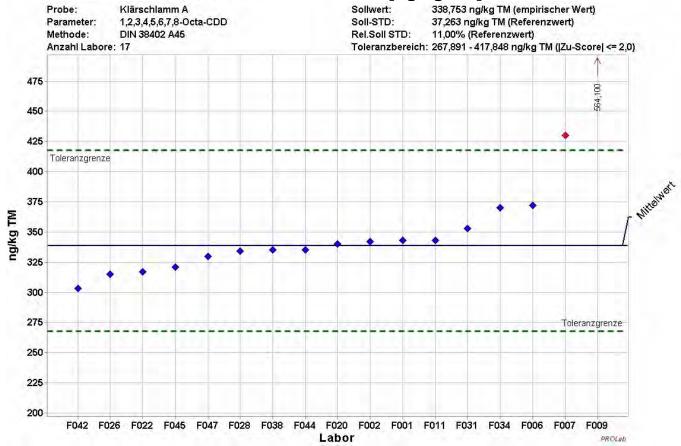
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	344	0,66378	
F002	307	-0,36714	
F006	339	0,52963	
F007	332	0,34182	
F009	233,1	-2,58021	E
F011	372	1,41502	
F020	339	0,52963	
F022	315	-0,12756	
F026	295	-0,7265	
F028	311,862	-0,22153	
F031	340	0,55646	
F034	322,510	0,08721	
F038	308	-0,33719	
F042	289	-0,90618	
F044	305	-0,42703	
F045	302	-0,51687	
F047	330	0,28816	

KS A

Mittelwert	338,753	ng/kg TM
Vergleich-Stdabw.	26,526	ng/kg TM
Soll-Stdabw	37,263	ng/kg TM *)
rel. Vergleich-Stdabw.	7,83	%
Rel. Soll-Stdabw.	11,0	% *)
untere Toleranzgrenze	267,891	ng/kg TM
obere Toleranzgrenze	417,848	ng/kg TM
Horwitz-Verhältniszahl	0,5	n.Thomp.

KS B


319,260	ng/kg TM
25,546	ng/kg TM
35,119	ng/kg TM *)
8,0	%
11,0	% *)
252,475	ng/kg TM
393,803	ng/kg TM
0,5	n.Thomp.

Z_u-Score zu hoch

Z_u-Score zu niedrig

KS B: D75 - 1,2,3,4,5,6,7,8 - Octa CDD [ng/kg TM]

KS B: D75 - 1,2,3,4,5,6,7,8 - Octa CDD [ng/kg TM

2.2.9 F83 – 2,3,7,8 – Tetra CDF [ng/kg TM]

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	2,60	-0,3	
F002	3,26	1,1	
F006	2,65	-0,2	
F007	2,81	0,2	
F009	4,991	4,8	E
F011	1,46	-3,1	E
F020	2.5	-0,6	
F022	2,23	-1,2	
F026	2,86	0,3	
F028	2,698	-0,1	
F031	3,12	0,8	
F034	2,941	0,4	
F038	2,53	-0,5	
F042	3,05	0,7	
F044	2,97	0,5	
F045	2,38	-0,9	
F047	3,00	0,6	

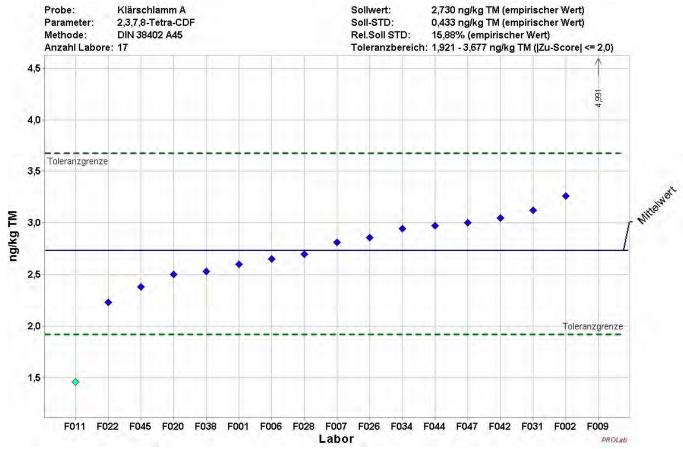
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	1,62	0,0	
F002	1,93	0,9	
F006	1,16	-1,6	
F007	1,71	0,3	
F009	1,561	-0,1	
F011	3,10	4,3	E
F020	1.8	0,6	
F022	1,3	-1,1	
F026	1,45	-0,5	
F028	1,660	0,2	
F031	1,70	0,3	
F034	1,655	0,1	
F038	1,32	-1,0	
F042	1,78	0,5	
F044	1,53	-0,3	
F045	1,41	-0,7	
F047	2,10	1,4	

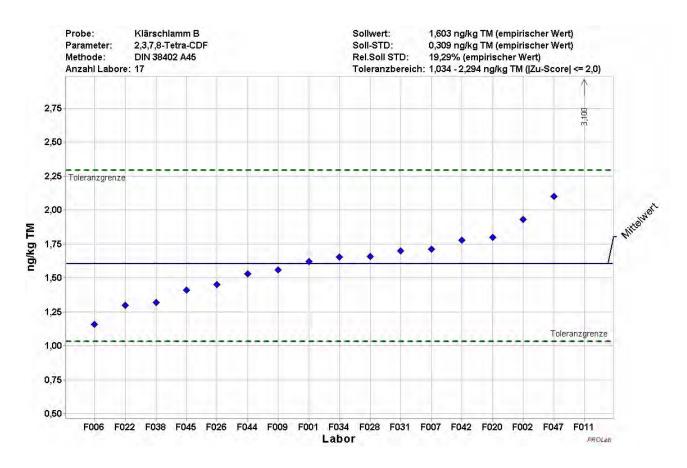
KS A

Mittelwert	2,730	ng/kg TM
Vergleich-Stdabw.	0,433	ng/kg TM
rel. Vergleich-Stdabw.	15,88	%
untere Toleranzgrenze	1,921	ng/kg TM
obere Toleranzgrenze	3,677	ng/kg TM
Horwitz-Verhältniszahl	0,7	n.Thomp.

KS B


1,603	ng/kg TM
0,309	ng/kg TM
19,29	%
1,034	ng/kg TM
2,294	ng/kg TM
0,9	n. Thomp.

Zu-Score zu hoch


Z_u-Score zu niedrig

KS A: F83 - 2,3,7,8 - Tetra CDF [ng/kg]

KS B: F83 - 2,3,7,8 - Tetra CDF [ng/kg]

2.2.10 F94 – 1,2,3,7,8 – Penta CDF [ng/kg TM]

Bei Klärschlamm B lag die untere Toleranzgrenze unterhalb der Bestimmungsgrenze. Der Wert wurde ausgewertet und in die Bewertung einbezogen. (vgl. Anmerkung Kapitel 1.4)

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	1,89	0,5	
F002	1,64	-0,3	
F006	1,87	0,5	
F007	1,61	-0,4	
F009	5,631	11,8	Е
F011	4,19	7,5	Е
F020	1.8	0,2	
F022	1,44	-1,0	
F026	1,40	-1,1	
F028	2,199	1,5	
F031	1,63	-0,3	
F034	1,636	-0,3	
F038	1,59	-0,5	
F042	2,29	1,7	
F044	1,58	-0,5	
F045	1,71	0,0	
F047	1,65	-0,2	

KS B

NO D			
Labor	Messwert:	Zu-Score	Ausreißer
F001	1,07	0,6	
F002	0,836	0,0	
F006	0,71	-0,5	
F007	0,883	0,1	
F009	1,110	0,7	
F011	6,79	15,5	Е
F020	1	0,4	
F022	<1	-1,3	
F026	0,702	-0,5	
F028	1,018	0,5	
F031	0,831	0,0	
F034	0,792	-0,1	
F038	<1	-1,3	
F042	1,24	1,1	
F044	0,728	-0,4	
F045	<1	-1,3	
F047	0,860	0,1	

KS A

Mittelwert	1,719	ng/kg TM
Vergleich-Stdabw.	0,300	ng/kg TM
rel. Vergleich-Stdabw.	17,43	%
untere Toleranzgrenze	1,163	ng/kg TM
obere Toleranzgrenze	2,380	ng/kg TM
Horwitz-Verhältniszahl	0,8	n.Thomp.

KS B

0,830	ng/kg TM
0,306	ng/kg TM
36,90	%
0,303	ng/kg TM
1,598	ng/kg TM
1,7	n.Thomp.

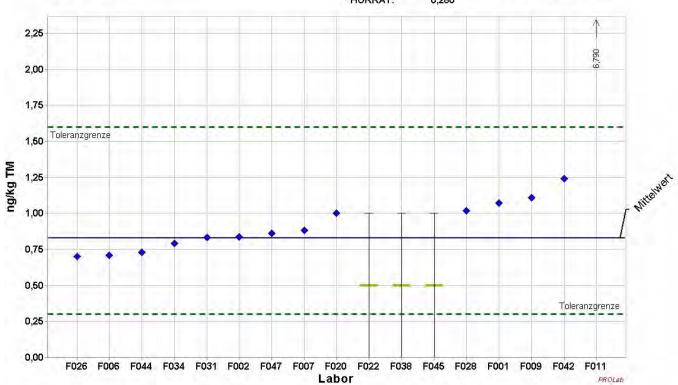
 Z_{u}

Zu-Score zu hoch

Z_u-Score zu niedrig

KS A: F94 - 1,2,3,7,8 - Penta CDF [ng/kg TM]

KS B: F94 - 1,2,3,7,8 - Penta CDF [ng/kg TM]


Probe: Klärschlamm B
Parameter: 1,2,3,7,8,-Penta-CDF
Methode: DIN 38402 A45
Anzahl Labore: 17

hlamm B ,8,-Penta-CDF 3402 A45

Sollwert: 0,830 ng/kg TM (empirischer Wert)
Soll-STD: 0,306 ng/kg TM (empirischer Wert)
Rel.Soll STD: 36,90% (empirischer Wert)

Toleranzbereich: 0,303 - 1,598 ng/kg TM (|Zu-Score| <= 2,0)

HORRAT: 0,280

2.2.11 F114 – 2,3,4,7,8 – Penta CDF [ng/kg TM]

00 **KS** A

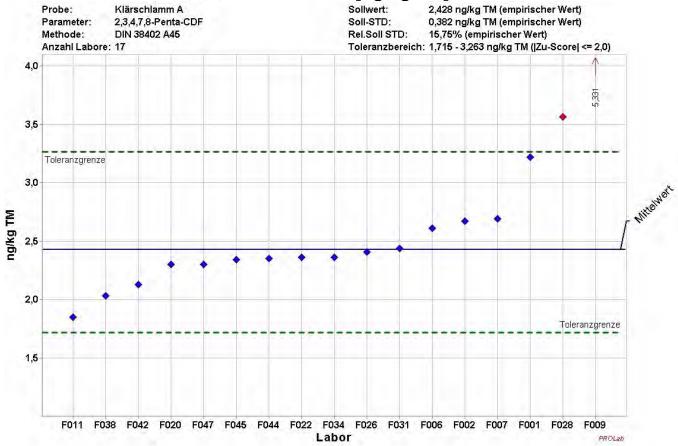
110 /			
Labor	Messwert:	Zu-Score	Ausreißer
F001	3,22	1,9	
F002	2,67	0,6	
F006	2,61	0,4	
F007	2,69	0,6	
F009	5,331	7,0	Е
F011	1,85	-1,6	
F020	2.3	-0,4	
F022	2,36	-0,2	
F026	2,41	-0,1	
F028	3,567	2,7	E
F031	2,44	0,0	
F034	2,364	-0,2	
F038	2,03	-1,1	
F042	2,13	-0,8	
F044	2,35	-0,2	
F045	2,34	-0,2	
F047	2,30	-0,4	

KS B

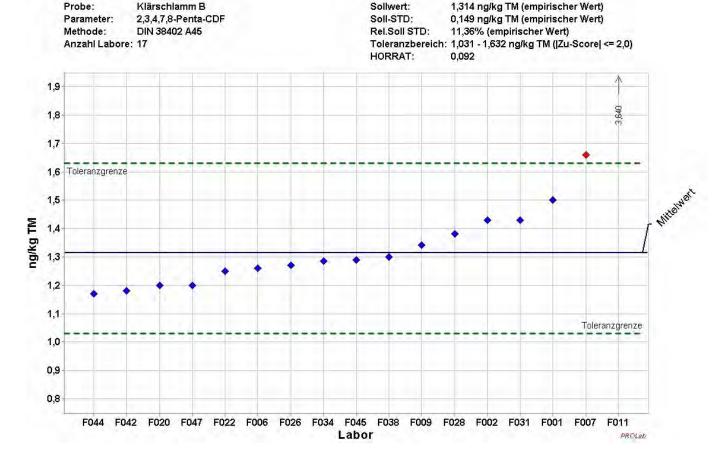
KO D			
Labor	Messwert:	Zu-Score	Ausreißer
F001	1,50	1,2	
F002	1,43	0,7	
F006	1,26	-0,4	
F007	1,66	2,2	Е
F009	1,341	0,2	
F011	3,64	14,7	Е
F020	1.2	-0,8	
F022	1,25	-0,5	
F026	1,27	-0,3	
F028	1,381	0,4	
F031	1,43	0,7	
F034	1,286	-0,2	
F038	1,30	-0,1	
F042	1,18	-0,9	
F044	1,17	-1,0	
F045	1,29	-0,2	
F047	1,20	-0,8	

KS A

Mittelwert	2,428	ng/kg TM
Vergleich-Stdabw.	0,382	ng/kg TM
rel. Vergleich-Stdabw.	15,75	%
untere Toleranzgrenze	1,715	ng/kg TM
obere Toleranzgrenze	3,263	ng/kg TM
Horwitz-Verhältniszahl	0,7	n.Thomp.


KS B

1,314	ng/kg TM
0,149	ng/kg TM
11,36	%
1,031	ng/kg TM
1,632	ng/kg TM
0,5	n. Thomp.


Z_u-Score zu hoch
Z_u-Score zu niedrig

KS A: F114 - 2,3,4,7,8 - Penta CDF [ng/kg TM]

KS B: F114 - 2,3,4,7,8 - Penta CDF [ng/kg TM]

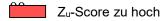
2.2.12 F118 – 1,2,3,4,7,8 – Hexa CDF [ng/kg TM]

Bei Klärschlamm B lag die untere Toleranzgrenze unterhalb der Bestimmungsgrenze. Der Wert wurde ausgewertet und in die Bewertung einbezogen. (vgl. Anmerkung Kapitel 1.4)

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	2,67	0,3	
F002	2,94	1,1	
F006	2,56	-0,1	
F007	2,61	0,1	
F009	10,64	26,0	E
F011	1,08	-5,4	E
F020	2.4	-0,7	
F022	2,35	-0,9	
F026	2,22	-1,3	
F028	3,137	1,8	
F031	2,72	0,4	
F034	2,600	0,0	
F038	2,50	-0,3	
F042	2,47	-0,4	
F044	2,49	-0,4	
F045	2,53	-0,2	
F047	2,75	0,5	

KS B

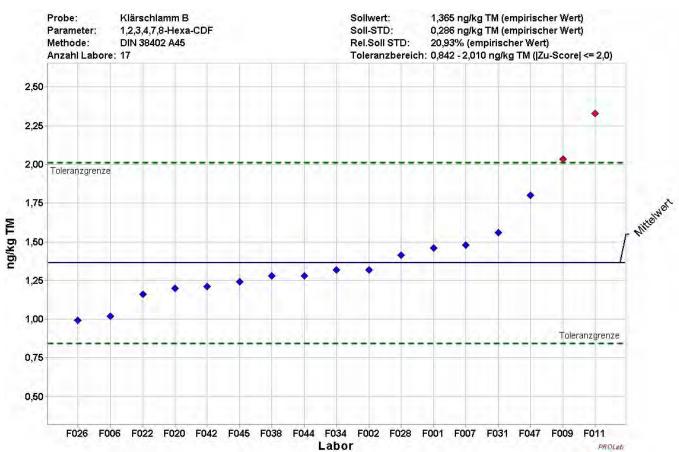

Labor	Messwert:	Zu-Score	Ausreißer
F001	1,46	0,3	
F002	1,32	-0,2	
F006	1,02	-1,3	
F007	1,48	0,4	
F009	2,036	2,1	Е
F011	2,33	3,0	Е
F020	1.2	-0,6	
F022	1,16	-0,8	
F026	0,992	-1,4	
F028	1,413	0,1	
F031	1,56	0,6	
F034	1,317	-0,2	
F038	1,28	-0,3	
F042	1,21	-0,6	
F044	1,28	-0,3	
F045	1,24	-0,5	
F047	1,80	1,3	

KS A

Mittelwert	2,589	ng/kg TM
Vergleich-Stdabw.	0,292	ng/kg TM
rel. Vergleich-Stdabw.	11,26	%
untere Toleranzgrenze	2,035	ng/kg TM
obere Toleranzgrenze	3,209	ng/kg TM
Horwitz-Verhältniszahl	0,5	n.Thomp.

KS B

_	
1,365	ng/kg TM
0,286	ng/kg TM
20,93	%
0,842	ng/kg TM
2,010	ng/kg TM
1.0	n. Thomp.


Z_u-Score zu niedrig

KS A: F118 - 1,2,3,4,7,8 - Hexa CDF [ng/kg TM]

KS B: F118 – 1,2,3,4,7,8 – Hexa CDF [ng/kg TM]

F121 - 1,2,3,6,7,8 - Hexa CDF [ng/kg TM]

Bei Klärschlamm A und B lag die untere Toleranzgrenze unterhalb der Bestimmungsgrenze. Die Werte wurden ausgewertet und in die Bewertung einbezogen. (vgl. Anmerkung Kapitel 1.4)

KS A

Labor	Messwert:	Zu-Score	Ausreißer
			Austriisei
F001	2,08	0,4	
F002	1,74	-0,2	
F006	1,92	0,1	
F007	1,87	0,0	
F009	7,661	9,9	E
F011	<1	-3,0	E
F020	1.7	-0,3	
F022	2,19	0,6	
F026	1,28	-1,3	
F028	1,973	0,2	
F031	1,72	-0,3	
F034	1,667	-0,4	
F038	2,15	0,5	
F042	1,59	-0,6	
F044	2,48	1,1	
F045	1,54	-0,7	
F047	2,50	1,1	

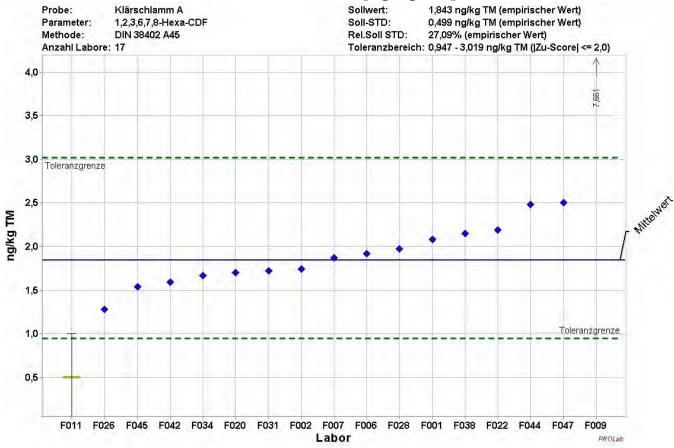
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	1,18	0,7	
F002	0,999	-0,1	
F006	0,98	-0,2	
F007	1,20	0,7	
F009	1,211	0,8	
F011	1,95	3,8	E
F020	0.9	-0,6	
F022	1,29	1,1	
F026	0,781	-1,2	
F028	0,996	-0,1	
F031	1,10	0,3	
F034	0,974	-0,2	
F038	1,03	0,0	
F042	0,974	-0,2	
F044	0,932	-0,4	
F045	<1	-2,6	Е
F047	2,40	5,6	E

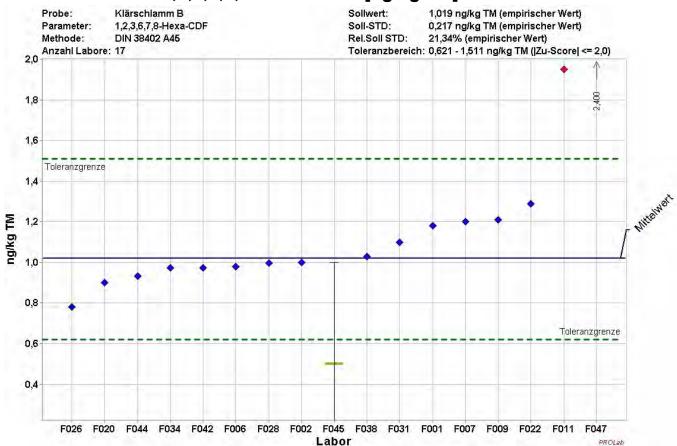
KS A

Mittelwert	1,843	ng/kg TM
Vergleich-Stdabw.	0,499	ng/kg TM
rel. Vergleich-Stdabw.	27,09	%
untere Toleranzgrenze	0,947	ng/kg TM
obere Toleranzgrenze	3,019	ng/kg TM
Horwitz-Verhältniszahl	1,2	n.Thomp.

KS B


1,019	ng/kg TM
0,217	ng/kg TM
21,34	%
0,621	ng/kg TM
1,511	ng/kg TM
1,0	n.Thomp.

Zu-Score zu hoch


Z_u-Score zu niedrig

KS A: F121 - 1,2,3,6,7,8 - Hexa CDF [ng/kg TM]

KS B: F121 - 1,2,3,6,7,8 - Hexa CDF [ng/kg TM]

2.2.13 F124 – 1,2,3,7,8,9 – Hexa CDF [ng/kg TM]

Bei Klärschlamm A und B sind mehr als 25% der abgegebenen Werte nicht quantifizierbar, deshalb wurde an diesen Proben-Parameter-Kombinationen keine Auswertung und keine Fehlerbewertung vorgenommen.

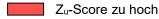
2.2.14 F130 – 2,3,4,6,7,8 – Hexa CDF [ng/kg TM]

Bei Klärschlamm B lag die untere Toleranzgrenze unterhalb der Bestimmungsgrenze. Der Wert wurde ausgewertet und in die Bewertung einbezogen. (vgl. Anmerkung Kapitel 1.4)

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	1,85	0,0	
F002	2,07	0,5	
F006	2,16	0,8	
F007	2,17	0,8	
F009	4,999	7,5	Е
F011	<1	-3,9	E
F020	1.5	-1,0	
F022	3,49	3,9	E
F026	1,72	-0,3	
F028	1,802	-0,1	
F031	1,97	0,3	
F034	1,957	0,3	
F038	1,79	-0,1	
F042	1,79	-0,1	
F044	1,55	-0,8	
F045	1,63	-0,6	
F047	2,10	0,6	

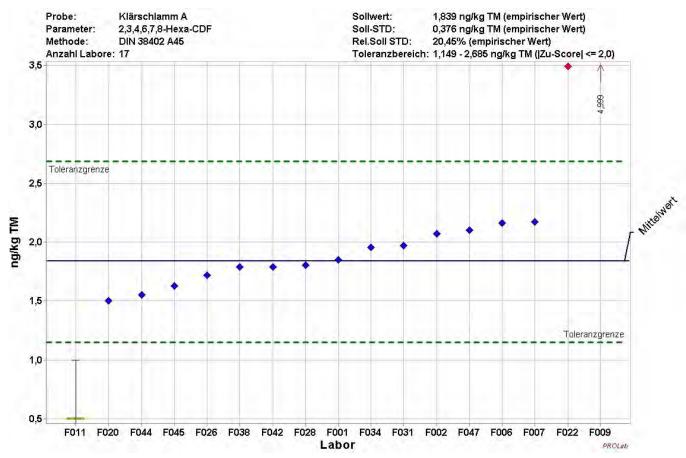
KS B


Labor	Messwert:	Zu-Score	Ausreißer
F001	<1,0	-1,9	
F002	1,12	0,5	
F006	1,00	0,1	
F007	1,28	0,9	
F009	1,023	0,2	
F011	2,19	3,7	E
F020	0.8	-0,7	
F022	2,19	3,7	E
F026	1,00	0,1	
F028	0,981	0,0	
F031	1,22	0,8	
F034	1,106	0,4	
F038	1,14	0,5	
F042	0,964	0,0	
F044	0,723	-1,0	
F045	<1	-1,9	
F047	1,00	0,1	

KS A

Mittelwert	1,839	ng/kg TM
Vergleich-Stdabw.	0,376	ng/kg TM
rel. Vergleich-Stdabw.	20,45	%
untere Toleranzgrenze	1,149	ng/kg TM
obere Toleranzgrenze	2,685	ng/kg TM
Horwitz-Verhältniszahl	0,9	n.Thomp.

KS B


0,968	ng/kg TM
0,278	ng/kg TM
27,77	%
0,471	ng/kg TM
1,631	ng/kg TM
1,3	n. Thomp.

Z_u-Score zu niedrig

KS A: F130 - 2,3,4,6,7,8 - Hexa CDF [ng/kg TM]

KS B: F130 - 2,3,4,6,7,8 - Hexa CDF [ng/kg TM]

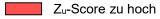
2.2.15 F131 – 1,2,3,4,6,7,8 – Hepta CDF [ng/kg TM]

Da bei Klärschlamm B der Horrat nach Thompson bei 0,43 lag, wurde Standardabweichung und Toleranzgrenze mit Hilfe der Horwitz-Verhältniszahl nach Thompson von 0,5 berechnet.

KS A

NO A			
Labor	Messwert:	Zu-Score	Ausreißer
F001	18,8	2,6	Е
F002	15	0,2	
F006	14,2	-0,3	
F007	13,6	-0,7	
F009	16,96	1,4	
F011	8,10	-4,5	E
F020	13.3	-0,9	
F022	14,6	0,0	
F026	12,7	-1,4	
F028	18,509	2,4	Е
F031	14,6	0,0	
F034	14,561	-0,1	
F038	14,2	-0,3	
F042	13,1	-1,1	
F044	13,9	-0,5	
F045	13,9	-0,5	
F047	16,5	1,1	

KS B

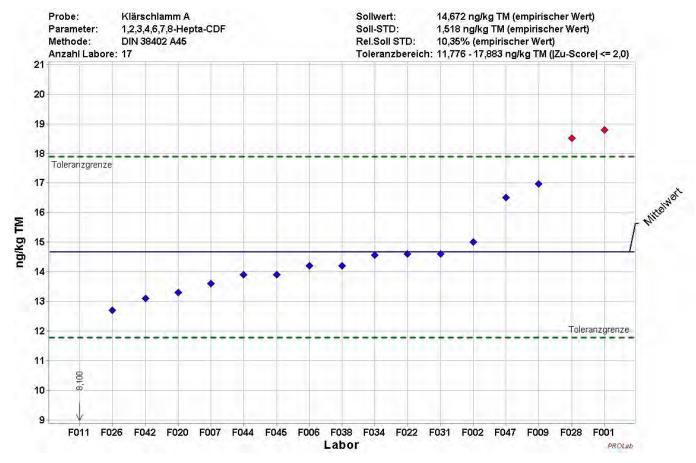

NOD			
Labor	Messwert:	Zu-Score	Ausreißer
F001	8,23	0,7	
F002	7,84	0,2	
F006	7,06	-0,7	
F007	7,36	-0,3	
F009	11,09	3,9	Е
F011	17,1	10,6	Е
F020	7.2	-0,5	
F022	8,08	0,5	
F026	6,91	-0,9	
F028	8,171	0,6	
F031	7,68	0,1	
F034	7,860	0,3	
F038	7,30	-0,4	
F042	7,05	-0,7	
F044	7,56	-0,1	
F045	7,57	-0,1	
F047	8,60	1,1	

KS A

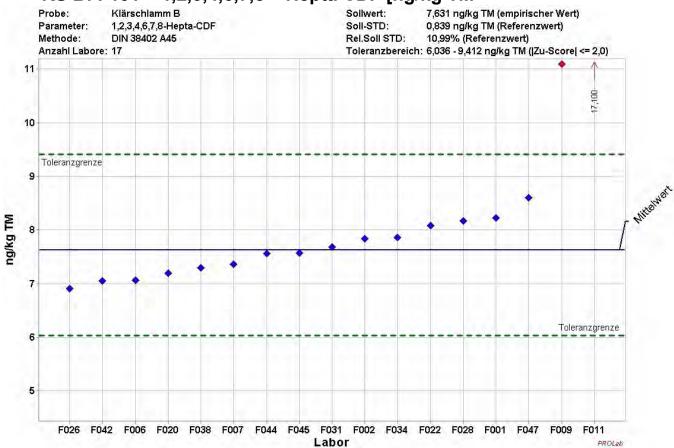
Mittelwert	14,672	ng/kg TM
Vergleich-Stdabw.	1,518	ng/kg TM
Soll-Stdabw	-	ng/kg TM *)
rel. Vergleich-Stdabw.	10,35	%
Rel. Soll-Stdabw.	-	% *)
untere Toleranzgrenze	11,776	ng/kg TM
obere Toleranzgrenze	17,883	ng/kg TM
Horwitz-Verhältniszahl	0,5	n.Thomp.

KS B

7,631	ng/kg TM
0,839	ng/kg TM
0,722	ng/kg TM *)
9,47	%
11,0	% *)
6,036	ng/kg TM
9,412	ng/kg TM
0,5	n.Thomp.



Z_u-Score zu niedrig


^{*} vergl. Abs. 1.4

KS A: F131 - 1,2,3,4,6,7,8 - Hepta CDF [ng/kg TM]

KS B: F131 - 1,2,3,4,6,7,8 - Hepta CDF [ng/kg TM

2.2.16 F134 – 1,2,3,4,7,8,9 – Hepta CDF [ng/kg TM]

Bei Klärschlamm A und B lag die untere Toleranzgrenze unterhalb der Bestimmungsgrenze. Die Werte wurden ausgewertet und in die Bewertung einbezogen. (vgl. Anmerkung Kapitel 1.4)

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	1,55	0,9	
F002	1,43	0,4	
F006	1,52	0,8	
F007	1,30	-0,1	
F009	6,081	18,6	Е
F011	<1	-3,8	Е
F020	1.1	-1,0	
F022	1,37	0,2	
F026	1,16	-0,7	
F028	1,767	1,8	
F031	1,25	-0,3	
F034	1,198	-0,5	
F038	1,36	0,2	
F042	1,26	-0,3	
F044	1,17	-0,7	
F045	1,24	-0,4	
F047	1,40	0,3	

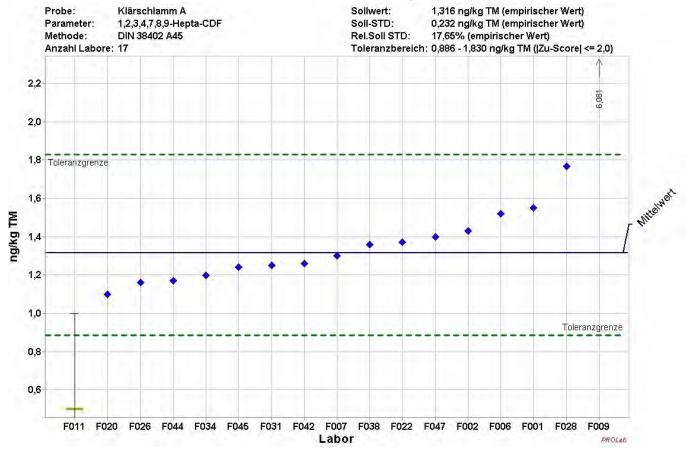
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	<1,0	-1,3	Е
F002	0,787	0,7	
F006	0,73	0,4	
F007	0,885	1,3	
F009	4,114	20,4	Е
F011	1,65	5,8	Е
F020	0.7	0,2	
F022	<1	-1,3	Е
F026	0,682	0,1	
F028	0,780	0,6	
F031	0,733	0,4	
F034	0,690	0,1	
F038	<1	-1,3	Е
F042	0,654	-0,1	
F044	0,680	0,1	
F045	<1	-1,3	E
F047	0,740	0,4	

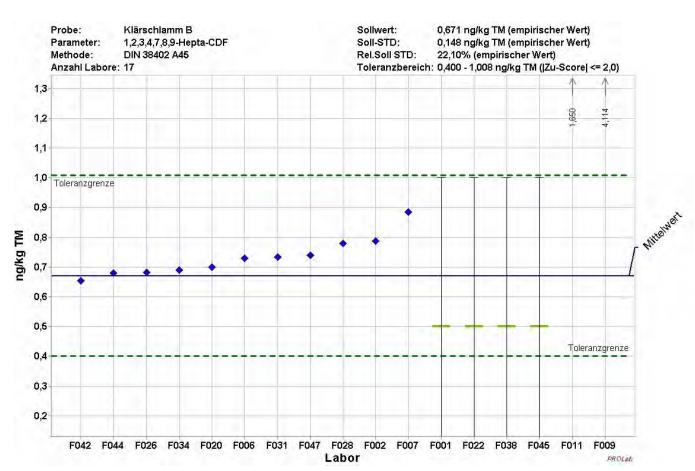
KS A

Mittelwert	1,316	ng/kg TM
Vergleich-Stdabw.	0,232	ng/kg TM
rel. Vergleich-Stdabw.	17,65	%
untere Toleranzgrenze	0,886	ng/kg TM
obere Toleranzgrenze	1,830	ng/kg TM
Horwitz-Verhältniszahl	0,8	n.Thomp.

KS B


0,671	ng/kg TM
0,148	ng/kg TM
22,10	%
0,400	ng/kg TM
1,008	ng/kg TM
1,0	n.Thomp.

Z_u-Score zu hoch


Z_u-Score zu niedrig

KS A: F134 - 1,2,3,4,7,8,9 - Hepta CDF [ng/kg TM]

KS B: F134 - 1,2,3,4,7,8,9 - Hepta CDF [ng/kg TM]

2.2.17 F135 – 1,2,3,4,5,6,7,8 – Octa CDF [ng/kg TM]

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	35,0	1,3	
F002	29,5	0,4	
F006	28,7	0,3	
F007	24,1	-0,6	
F009	75,61	7,8	Е
F011	15,1	-2,3	Е
F020	24.8	-0,4	
F022	20,04	-1,4	
F026	26,0	-0,2	
F028	33,398	1,0	
F031	30,2	0,5	
F034	27,689	0,1	
F038	25,0	-0,4	
F042	25,9	-0,2	
F044	25,2	-0,4	
F045	26,1	-0,2	
F047	31,5	0,7	

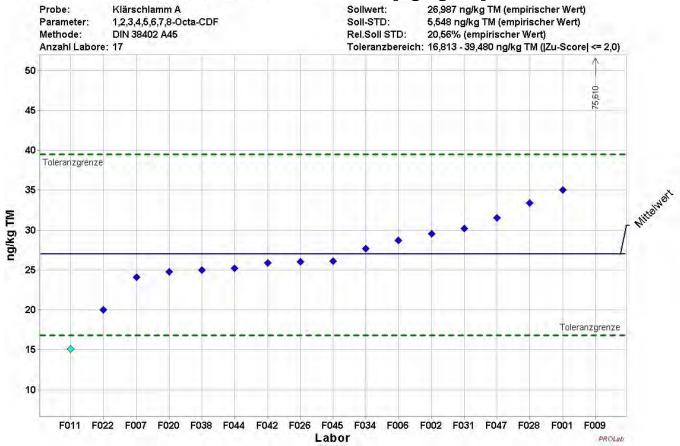
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	19,4	1,0	
F002	17,8	0,3	
F006	17,4	0,2	
F007	16,2	-0,3	
F009	17,34	0,2	
F011	33,4	6,4	Е
F020	16.9	0,0	
F022	12,2	-2,1	Е
F026	14,4	-1,1	
F028	19,402	1,0	
F031	19,5	1,0	
F034	16,879	0,0	
F038	14,7	-1,0	
F042	16,5	-0,2	
F044	16,6	-0,2	
F045	15,6	-0,6	
F047	19,0	0,8	

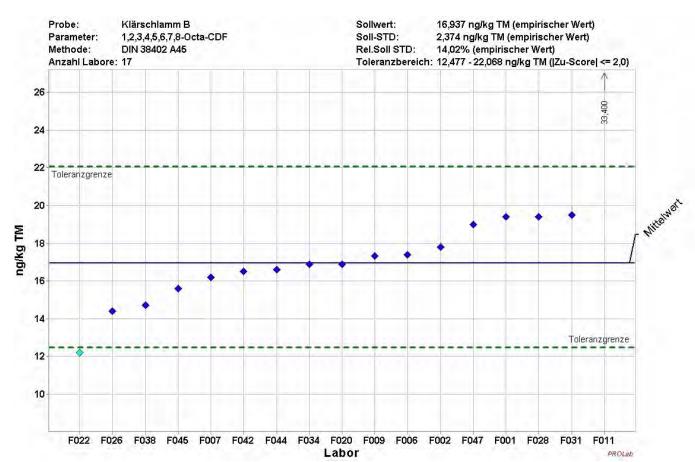
KS A

Mittelwert	26,987	ng/kg TM
Vergleich-Stdabw.	5,548	ng/kg TM
rel. Vergleich-Stdabw.	20,56	%
untere Toleranzgrenze	16,813	ng/kg TM
obere Toleranzgrenze	39,480	ng/kg TM
Horwitz-Verhältniszahl	0,9	n.Thomp.

KS B


16,937	ng/kg TM
2,374	ng/kg TM
14,02	%
12,477	ng/kg TM
22,068	ng/kg TM
0,6	n.Thomp.

Z_u-Score zu hoch


Z_u-Score zu niedrig

KS A: F135 – 1,2,3,4,5,6,7,8 – Octa CDF [ng/kg TM]

KS B: F135 - 1,2,3,4,5,6,7,8 - Octa CDF [ng/kg TM]

2.2.18 Toxizitätsäquivalent (TE) [ng/kg TM]

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	3,65	0,4	
F002	3,89	0,8	
F006	4,01	1,0	
F007	3,70	0,5	
F011	2,217	-2,4	Е
F020	3.1	-0,6	
F022	2,87	-1,1	
F026	2,87	-1,1	
F028	5,229	3,1	Е
F031	3,57	0,3	
F034	3,302	-0,2	
F038	3,11	-0,6	
F042	3,27	-0,3	
F044	3,45	0,1	
F045	3,82	0,7	
F047	3,50	0,1	

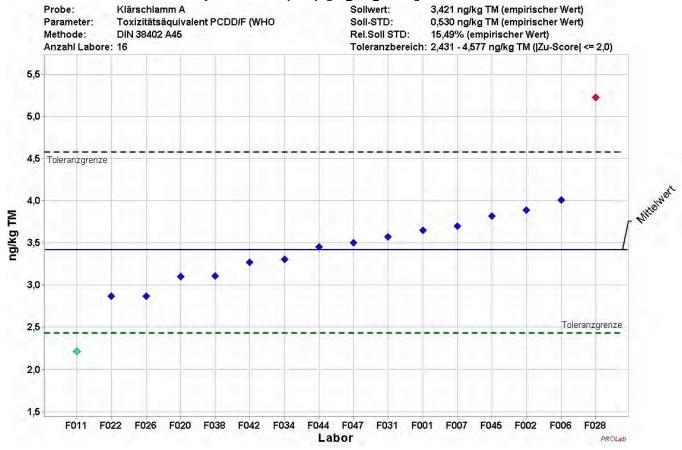
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	2,10	-0,9	
F002	2,84	0,6	
F006	2,73	0,4	
F007	2,77	0,5	
F011	3,779	2,3	E
F020	2.3	-0,5	
F022	1,94	-1,3	
F026	1,74	-1,7	
F028	3,905	2,5	E
F031	2,73	0,4	
F034	2,384	-0,3	
F038	2,28	-0,5	
F042	2,30	-0,5	
F044	2,20	-0,7	
F045	2,64	0,2	
F047	2,80	0,5	

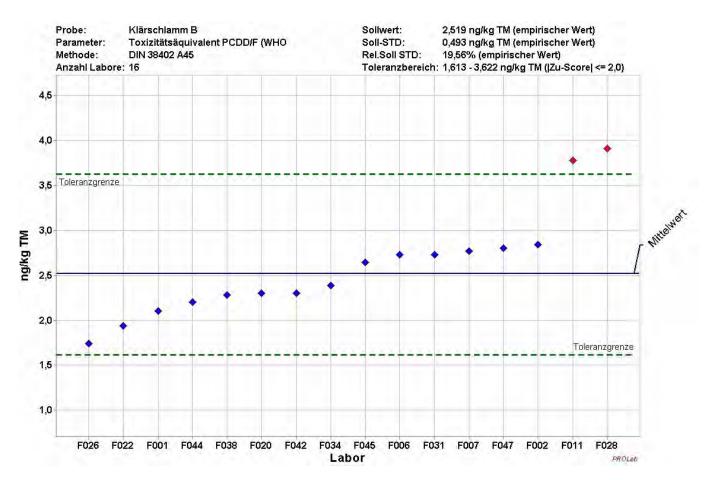
KS A

Mittelwert	3,421	ng/kg TM
Vergleich-Stdabw.	0,530	ng/kg TM
rel. Vergleich-Stdabw.	15,49	%
untere Toleranzgrenze	2,431	ng/kg TM
obere Toleranzgrenze	4,577	ng/kg TM
Horwitz-Verhältniszahl	0,7	n.Thomp.

KS B


2,519	ng/kg TM	
0,493	ng/kg TM	
19,56	%	
1,613	ng/kg TM	
3,622	ng/kg TM	
0,9	n. Thomp.	

Zu-Score zu hoch


Z_u-Score zu niedrig

KS A: Toxizitätsäquivalent (TE) [ng/kg TM]

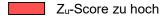
KS B: Toxizitätsäquivalent (TE) [ng/kg TM]

2.2.19 PCB 77

KS A

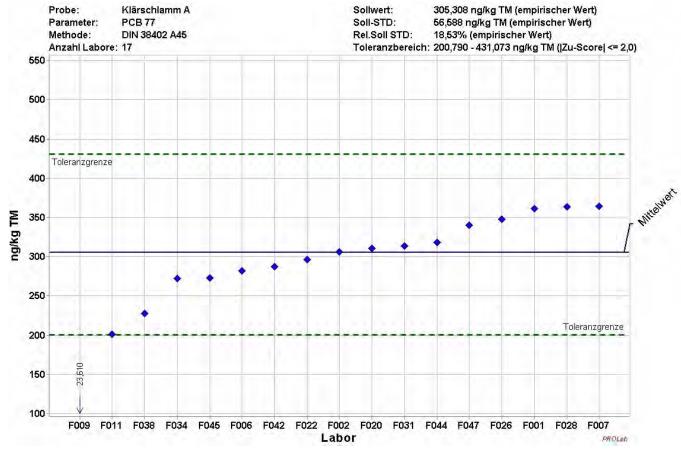
Labor	Messwert:	Zu-Score	Ausreißer
F001	361	0,9	
F002	306	0,0	
F006	282	-0,4	
F007	364	0,9	
F009	23,61	-5,4	Е
F011	201	-2,0	
F020	311	0,1	
F022	296,3	-0,2	
F026	348	0,7	
F028	363,886	0,9	
F031	314	0,1	
F034	272,312	-0,6	
F038	228	-1,5	
F042	287	-0,4	
F044	318	0,2	
F045	273	-0,6	
F047	340	0,6	

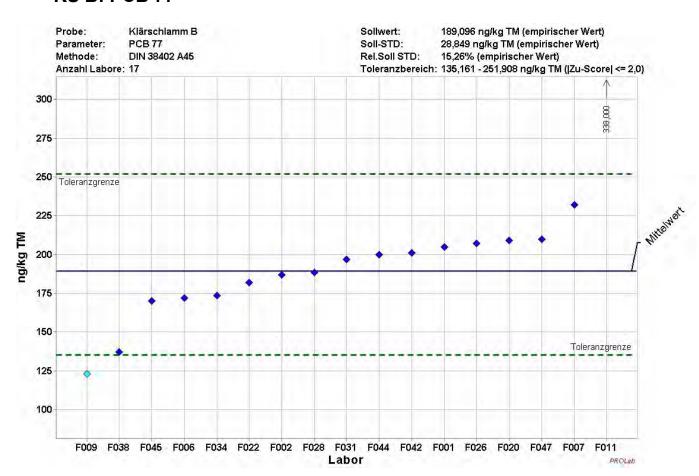
KS B


_			
Labor	Messwert:	Zu-Score	Ausreißer
F001	205	0,5	
F002	187	-0,1	
F006	172	-0,6	
F007	232	1,4	
F009	123	-2,5	Е
F011	338	4,7	Е
F020	209	0,6	
F022	182	-0,3	
F026	207	0,6	
F028	188,272	0,0	
F031	197	0,3	
F034	173,620	-0,6	
F038	137	-1,9	
F042	201	0,4	
F044	200	0,3	
F045	170	-0,7	
F047	210	0,7	

KS A

Mittelwert	305,308	ng/kg TM
Vergleich-Stdabw.	56,588	ng/kg TM
rel. Vergleich-Stdabw.	18,53	%
untere Toleranzgrenze	200,790	ng/kg TM
obere Toleranzgrenze	431,073	ng/kg TM
Horwitz-Verhältniszahl	0,8	n.Thomp.


KS B


189,096	ng/kg TM
28,849	ng/kg TM
15,26	%
135,161	ng/kg TM
251,908	ng/kg TM
0,7	n.Thomp.

Z_u-Score zu niedrig

2.2.20 PCB 81

KS A

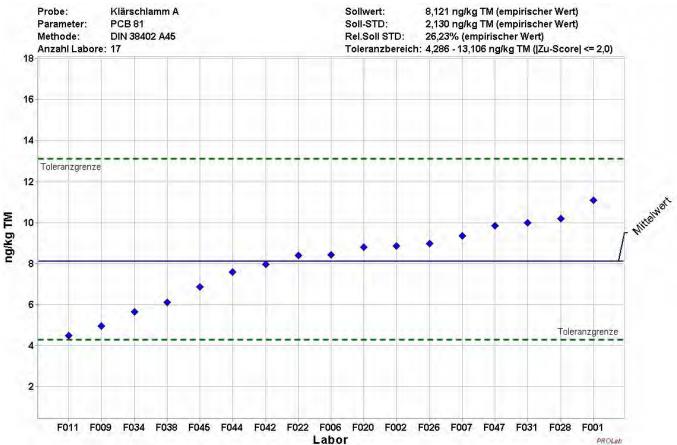
Labor	Messwert:	Zu-Score	Ausreißer
F001	11,1	1,2	
F002	8,88	0,3	
F006	8,42	0,1	
F007	9,37	0,5	
F009	4,966	-1,6	
F011	4,50	-1,9	
F020	8.8	0,3	
F022	8,39	0,1	
F026	8,98	0,3	
F028	10,186	0,8	
F031	10,0	0,8	
F034	5,644	-1,3	
F038	6,13	-1,0	
F042	7,97	-0,1	
F044	7,58	-0,3	
F045	6,87	-0,7	
F047	9,85	0,7	

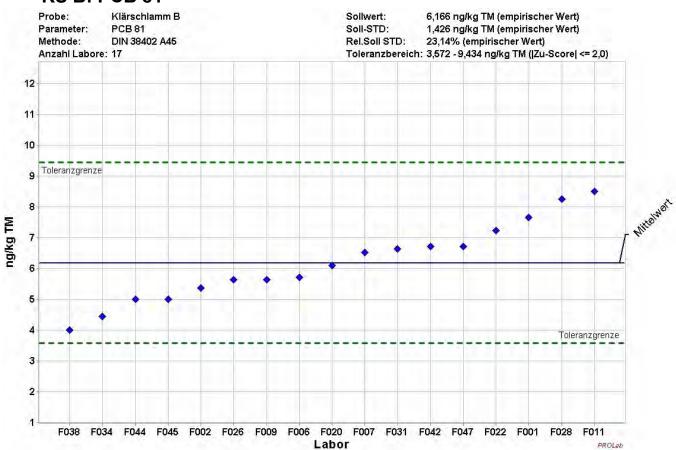
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	7,64	0,9	
F002	5,36	-0,6	
F006	5,71	-0,4	
F007	6,51	0,2	
F009	5,63	-0,4	
F011	8,50	1,4	
F020	6.1	-0,1	
F022	7,23	0,7	
F026	5,62	-0,4	
F028	8,234	1,3	
F031	6,63	0,3	
F034	4,433	-1,3	
F038	3,99	-1,7	
F042	6,70	0,3	
F044	4,99	-0,9	
F045	5,00	-0,9	
F047	6,70	0,3	

KS A

Mittelwert	8,121	ng/kg TM
Vergleich-Stdabw.	2,130	ng/kg TM
rel. Vergleich-Stdabw.	26,23	%
untere Toleranzgrenze	4,286	ng/kg TM
obere Toleranzgrenze	13,106	ng/kg TM
Horwitz-Verhältniszahl	1,2	n.Thomp.


KS B


6,166	ng/kg TM
1,426	ng/kg TM
23,14	%
3,572	ng/kg TM
9,434	ng/kg TM
1,1	n.Thomp.

Z_u-Score zu hoch

Z_u-Score zu niedrig

2.2.21 PCB 105

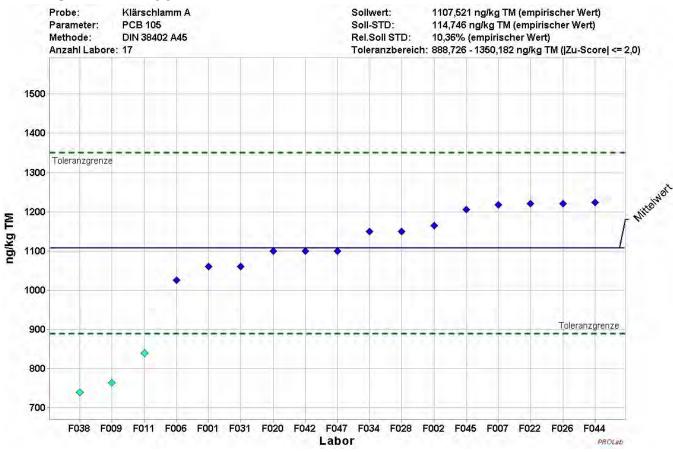
KS A

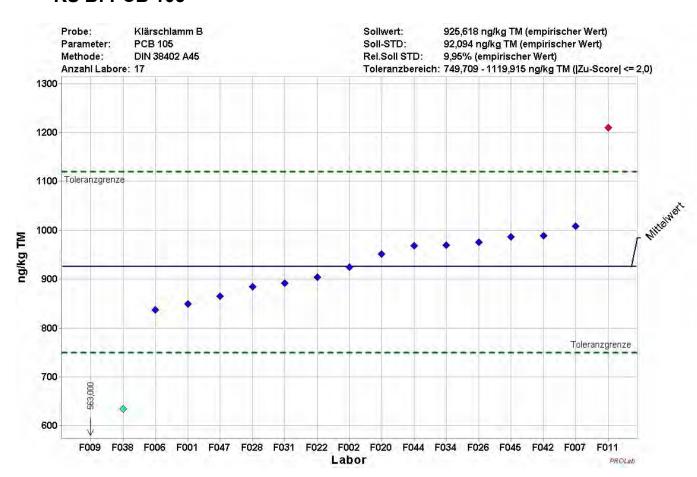
Labor	Messwert:	Zu-Score	Ausreißer
F001	1060	-0,4	
F002	1165	0,5	
F006	1025	-0,8	
F007	1218	0,9	
F009	763	-3,1	Е
F011	839	-2,5	Е
F020	1100	-0,1	
F022	1220	0,9	
F026	1220	0,9	
F028	1150,282	0,4	
F031	1060	-0,4	
F034	1148,809	0,3	
F038	739	-3,4	Е
F042	1100	-0,1	
F044	1224	1,0	
F045	1206	0,8	
F047	1100	-0,1	

KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	849	-0,9	
F002	924	0,0	
F006	837	-1,0	
F007	1008	0,8	
F009	563	-4,1	Е
F011	1210	2,9	Е
F020	951	0,3	
F022	904	-0,2	
F026	975	0,5	
F028	884,921	-0,5	
F031	892	-0,4	
F034	969,298	0,4	
F038	634	-3,3	Е
F042	989	0,7	
F044	968	0,4	
F045	987	0,6	
F047	865	-0,7	

KS A


Mittelwert	1107,521	ng/kg TM
Vergleich-Stdabw.	114,746	ng/kg TM
rel. Vergleich-Stdabw.	10,36	%
untere Toleranzgrenze	888,726	ng/kg TM
obere Toleranzgrenze	1350,152	ng/kg TM
Horwitz-Verhältniszahl	0,5	n.Thomp.


KS B

925,618	ng/kg TM
92,094	ng/kg TM
9,95	%
749,709	ng/kg TM
1119,915	ng/kg TM
0,5	n.Thomp.

Z_u-Score zu hoch
Z_u-Score zu niedrig

2.2.22 PCB 114

KS A

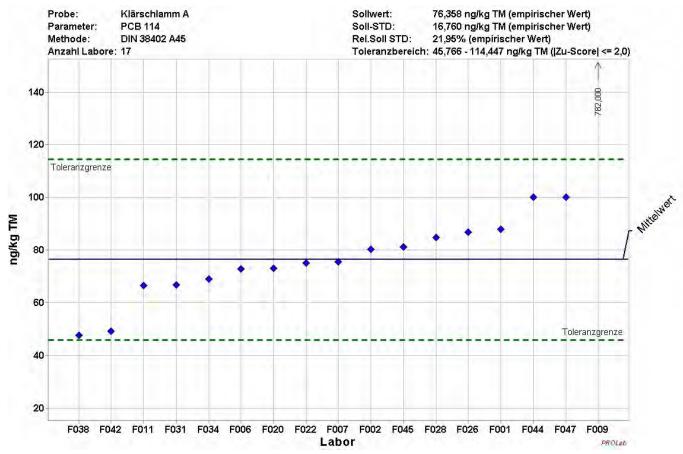
Labor	Messwert:	Zu-Score	Ausreißer
F001	87,9	0,6	
F002	80,3	0,2	
F006	72,8	-0,2	
F007	75,5	-0,1	
F009	782	37,1	Е
F011	66,5	-0,6	
F020	73	-0,2	
F022	75,1	-0,1	
F026	86,7	0,5	
F028	84,779	0,4	
F031	66,7	-0,6	
F034	68,907	-0,5	
F038	47,7	-1,9	
F042	49,1	-1,8	
F044	100	1,2	
F045	81,1	0,2	
F047	100	1,2	

KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	59,1	-0,7	
F002	70,9	0,1	
F006	63,8	-0,4	
F007	66,2	-0,2	
F009	121	3,2	Е
F011	76,5	0,5	
F020	73	0,2	
F022	62,0	-0,5	
F026	73,4	0,3	
F028	67,496	-0,1	
F031	62,9	-0,5	
F034	66,390	-0,2	
F038	40,6	-2,1	Е
F042	51,1	-1,3	
F044	86,0	1,0	
F045	81,7	0,8	
F047	83	0,9	

KS A

Mittelwert	76,358	ng/kg TM
Vergleich-Stdabw.	16,760	ng/kg TM
rel. Vergleich-Stdabw.	21,95	%
untere Toleranzgrenze	45,766	ng/kg TM
obere Toleranzgrenze	114,447	ng/kg TM
Horwitz-Verhältniszahl	1,0	n.Thomp.


KS B

69,009	ng/kg TM
14,546	ng/kg TM
21,08	%
42,379	ng/kg TM
101,877	ng/kg TM
1,0	n. Thomp.

Z_u-Score zu hoch

Z_u-Score zu niedrig

2.2.23 PCB 118

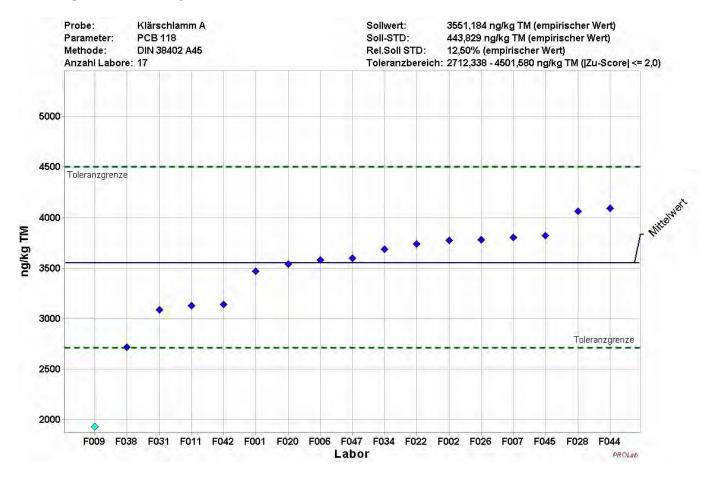
KS A

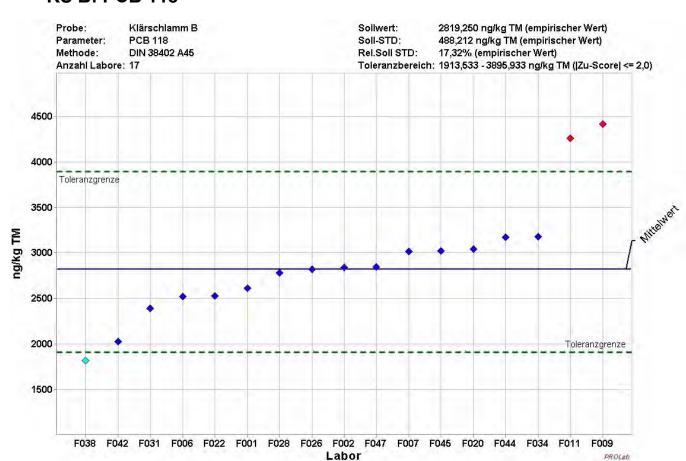
Labor	Messwert:	Zu-Score	Ausreißer
F001	3470	-0,2	
F002	3775	0,5	
F006	3580	0,1	
F007	3806	0,5	
F009	1931	-3,9	Е
F011	3130	-1,0	
F020	3540	0,0	
F022	3740	0,4	
F026	3780	0,5	
F028	4058,748	1,1	
F031	3090	-1,1	
F034	3688,796	0,3	
F038	2720	-2,0	
F042	3140	-1,0	
F044	4093	1,1	
F045	3819	0,6	
F047	3600	0,1	

KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	2610	-0,5	
F002	2843	0,0	
F006	2520	-0,7	
F007	3016	0,4	
F009	4415	3,0	Е
F011	4260	2,7	Е
F020	3040	0,4	
F022	2530	-0,6	
F026	2820	0,0	
F028	2782,779	-0,1	
F031	2390	-0,9	
F034	3181,580	0,7	
F038	1820	-2,2	E
F042	2030	-1,7	
F044	3173	0,7	
F045	3025	0,4	
F047	2850	0,1	

KS A


Mittelwert	3551,184	ng/kg TM
Vergleich-Stdabw.	443,829	ng/kg TM
rel. Vergleich-Stdabw.	12,50	%
untere Toleranzgrenze	2712,338	ng/kg TM
obere Toleranzgrenze	4501,580	ng/kg TM
Horwitz-Verhältniszahl	0,6	n.Thomp.


KS B

2819,250	ng/kg TM
488,212	ng/kg TM
17,32	%
1913,533	ng/kg TM
3895,933	ng/kg TM
0,8	n.Thomp.

Z_u-Score zu hoch
Z_u-Score zu niedrig

2.2.24 PCB 123

KS A

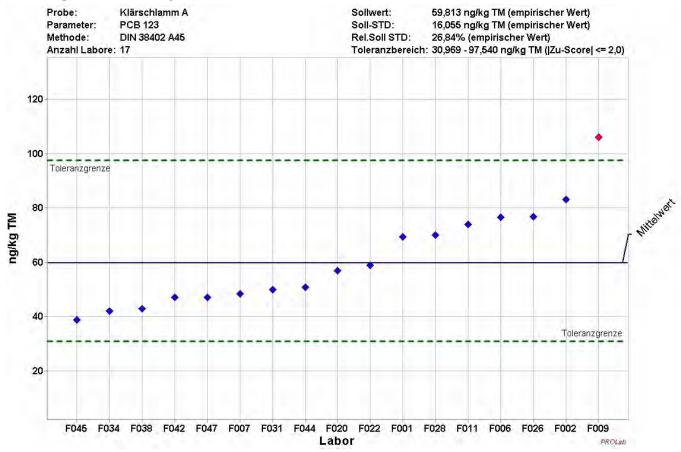
Labor	Messwert:	Zu-Score	Ausreißer
F001	69,4	0,5	
F002	83,2	1,2	
F006	76,5	0,9	
F007	48,5	-0,8	
F009	106,1	2,5	Е
F011	74,0	0,8	
F020	57	-0,2	
F022	58,92	-0,1	
F026	76,7	0,9	
F028	70,108	0,5	
F031	50,0	-0,7	
F034	42,091	-1,2	
F038	43,0	-1,2	
F042	47,0	-0,9	
F044	50,7	-0,6	
F045	38,8	-1,5	
F047	47,0	-0,9	

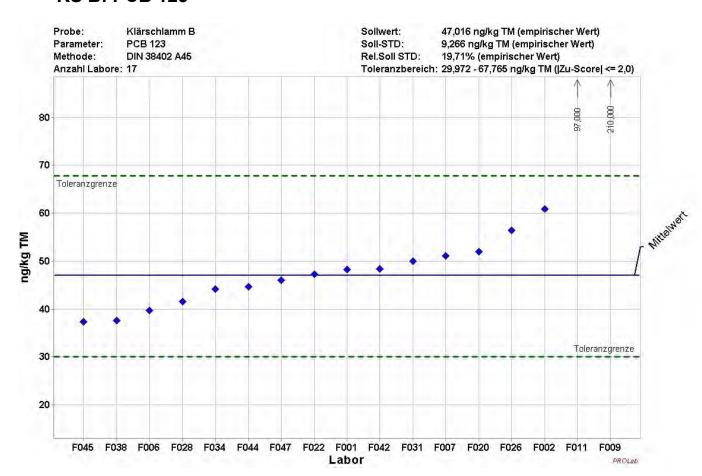
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	48,2	0,1	
F002	60,9	1,3	
F006	39,7	-0,9	
F007	51,1	0,4	
F009	210	15,7	Е
F011	97,0	4,8	Е
F020	52	0,5	
F022	47,28	0,0	
F026	56,4	0,9	
F028	41,502	-0,6	
F031	50,0	0,3	
F034	44,151	-0,3	
F038	37,6	-1,1	
F042	48,4	0,1	
F044	44,6	-0,3	
F045	37,4	-1,1	
F047	46,0	-0,1	

KS A

Mittelwert	59,813	ng/kg TM
Vergleich-Stdabw.	16,055	ng/kg TM
rel. Vergleich-Stdabw.	26,84	%
untere Toleranzgrenze	30,969	ng/kg TM
obere Toleranzgrenze	97,540	ng/kg TM
Horwitz-Verhältniszahl	1,2	n.Thomp.


KS B


47,016	ng/kg TM
9,266	ng/kg TM
19,71	%
29,972	ng/kg TM
67,765	ng/kg TM
0,9	n.Thomp.

Z_u-Score zu hoch

Z_u-Score zu niedrig

2.2.25 PCB 126

KS A

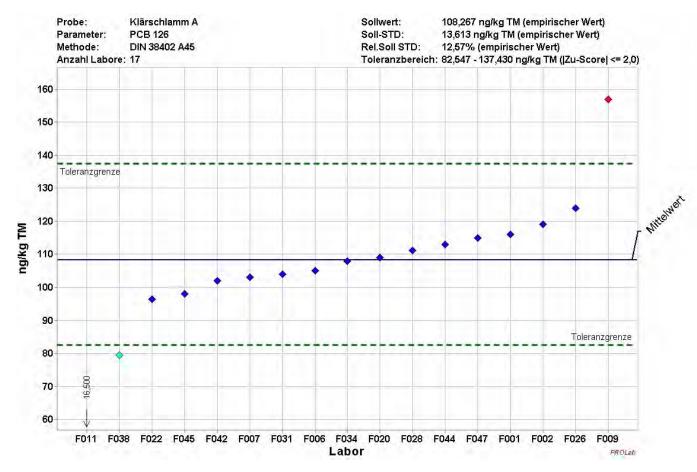
Labor	Messwert:	Zu-Score	Ausreißer
F001	116	0,5	
F002	119	0,7	
F006	105	-0,3	
F007	103	-0,4	
F009	156,9	3,3	E
F011	16,5	-7,1	Е
F020	109	0,1	
F022	96,4	-0,9	
F026	124	1,1	
F028	111,179	0,2	
F031	104	-0,3	
F034	107,856	0,0	
F038	79,5	-2,2	Е
F042	102	-0,5	
F044	113	0,3	
F045	98,1	-0,8	
F047	115	0,5	

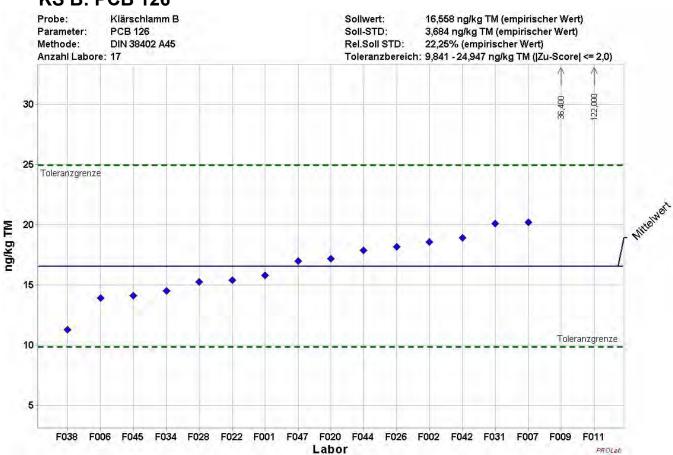
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	15,8	-0,2	
F002	18,6	0,5	
F006	13,9	-0,8	
F007	20,2	0,9	
F009	36,4	4,7	Е
F011	122	25,1	Е
F020	17.2	0,2	
F022	15,4	-0,3	
F026	18,2	0,4	
F028	15,236	-0,4	
F031	20,1	0,8	
F034	14,535	-0,6	
F038	11,3	-1,6	
F042	18,9	0,6	
F044	17,9	0,3	
F045	14,1	-0,7	
F047	17,0	0,1	

KS A

Mittelwert	108,267	ng/kg TM
Vergleich-Stdabw.	13,613	ng/kg TM
rel. Vergleich-Stdabw.	12,57	%
untere Toleranzgrenze	82,547	ng/kg TM
obere Toleranzgrenze	137,430	ng/kg TM
Horwitz-Verhältniszahl	0,6	n.Thomp.


KS B


16,558	ng/kg TM
3,684	ng/kg TM
22,25	%
9,841	ng/kg TM
24,947	ng/kg TM
1,0	n. Thomp.

Z_u-Score zu hoch

Z_u-Score zu niedrig

2.2.26 **PCB 156**

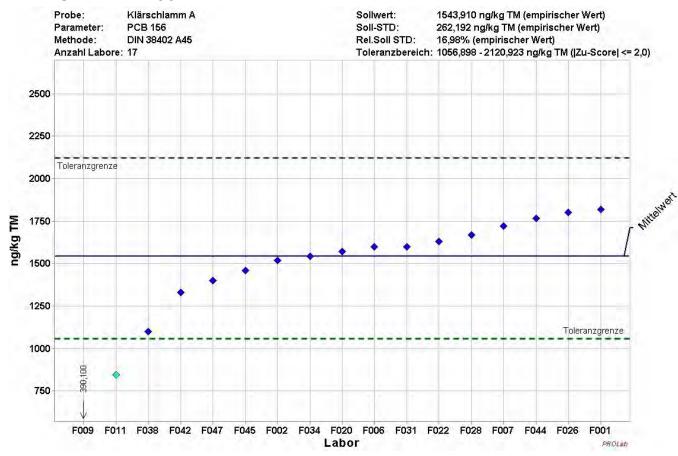
KS A

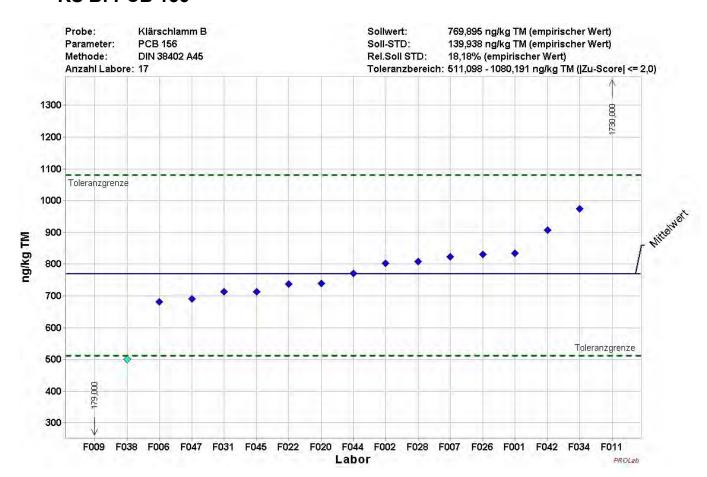
Labor	Messwert:	Zu-Score	Ausreißer
F001	1820	1,0	
F002	1520	-0,1	
F006	1600	0,2	
F007	1720	0,6	
F009	390,1	-4,7	E
F011	847	-2,9	Е
F020	1570	0,1	
F022	1630	0,3	
F026	1800	0,9	
F028	1669,084	0,4	
F031	1600	0,2	
F034	1542,288	0,0	
F038	1100	-1,8	
F042	1330	-0,9	
F044	1766	0,8	
F045	1460	-0,3	
F047	1400	-0,6	

KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	834	0,4	
F002	803	0,2	
F006	681	-0,7	
F007	824	0,3	
F009	179	-4,6	E
F011	1730	6,2	Е
F020	739	-0,2	
F022	737	-0,3	
F026	831	0,4	
F028	808,330	0,2	
F031	713	-0,4	
F034	974,926	1,3	
F038	501	-2,1	E
F042	908	0,9	
F044	771	0,0	
F045	713	-0,4	
F047	690	-0,6	

KS A


Mittelwert	1543,910	ng/kg TM
Vergleich-Stdabw.	262,192	ng/kg TM
rel. Vergleich-Stdabw.	16,98	%
untere Toleranzgrenze	1056,898	ng/kg TM
obere Toleranzgrenze	2120,923	ng/kg TM
Horwitz-Verhältniszahl	0,8	n.Thomp.


KS B

769,859	ng/kg TM
139,938	ng/kg TM
18,18	%
511,098	ng/kg TM
1080,191	ng/kg TM
0,8	n.Thomp.

Zu-Score zu hoch Z_u-Score zu niedrig

2.2.27 PCB 157

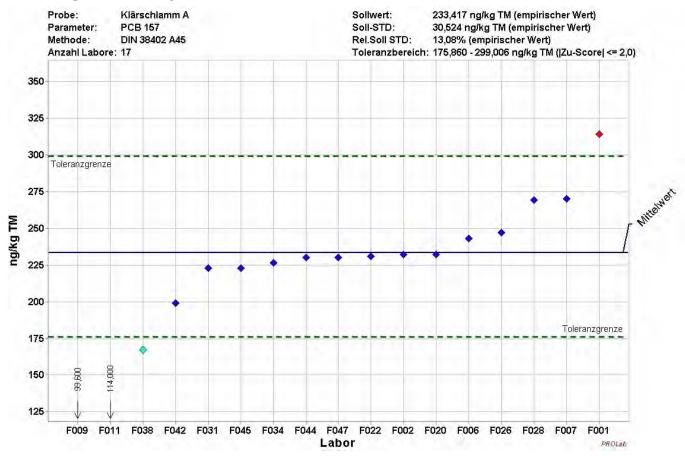
KS A

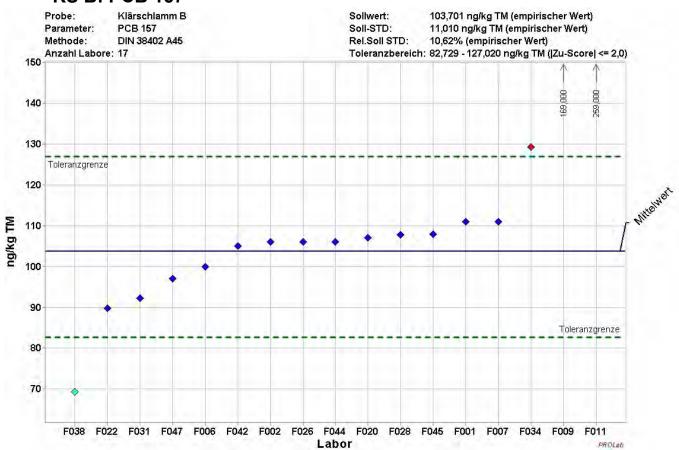
Labor	Messwert:	Zu-Score	Ausreißer
F001	314	2,5	Е
F002	232	0,0	
F006	243	0,3	
F007	270	1,1	
F009	99,6	-4,6	Е
F011	114	-4,1	Е
F020	232	0,0	
F022	231	-0,1	
F026	247	0,4	
F028	269,447	1,1	
F031	223	-0,4	
F034	226,459	-0,2	
F038	167	-2,3	E
F042	199	-1,2	
F044	230	-0,1	
F045	223	-0,4	
F047	230	-0,1	

KS B

110 0			
Labor	Messwert:	Zu-Score	Ausreißer
F001	111	0,6	
F002	106	0,2	
F006	100	-0,4	
F007	111	0,6	
F009	169	5,6	E
F011	259	13,3	E
F020	107	0,3	
F022	89,8	-1,3	
F026	106	0,2	
F028	107,745	0,3	
F031	92,2	-1,1	
F034	129,349	2,2	E
F038	69,3	-3,3	Е
F042	105	0,1	
F044	106	0,2	
F045	108	0,4	
F047	97,0	-0,6	

KS A


Mittelwert	233,417	ng/kg TM
Vergleich-Stdabw.	30,524	ng/kg TM
rel. Vergleich-Stdabw.	13,08	%
untere Toleranzgrenze	175,860	ng/kg TM
obere Toleranzgrenze	299,006	Ng/kg TM
Horwitz-Verhältniszahl	0,6	n.Thomp.


KS B

103,701	ng/kg TM
11,01	ng/kg TM
10,62	%
82,729	ng/kg TM
127,020	ng/kg TM
0,5	n.Thomp.

Z_u-Score zu hoch
Z_u-Score zu niedrig

2.2.28 PCB 167

KS A

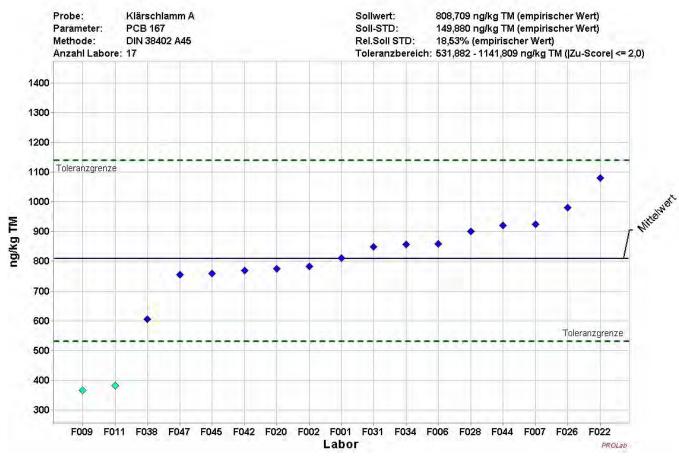
Labor	Messwert:	Zu-Score	Ausreißer
F001	810	0,0	
F002	783	-0,2	
F006	859	0,3	
F007	925	0,7	
F009	366	-3,2	Е
F011	382	-3,1	Е
F020	775	-0,2	
F022	1081	1,6	
F026	981	1,0	
F028	900,058	0,5	
F031	849	0,2	
F034	856,691	0,3	
F038	606	-1,5	
F042	768	-0,3	
F044	920	0,7	
F045	759	-0,4	
F047	755	-0,4	

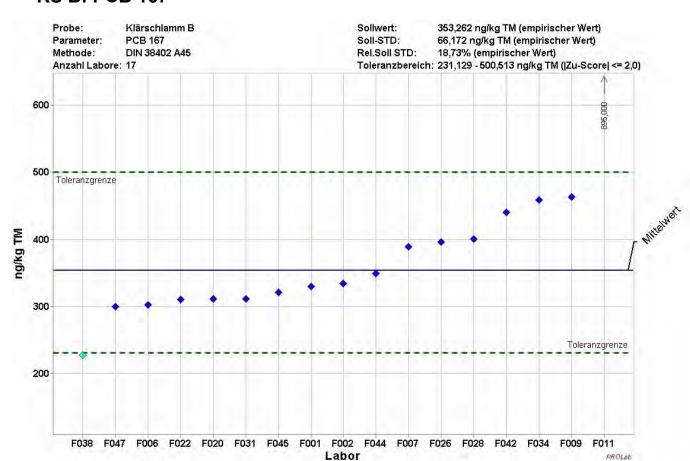
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	330	-0,4	
F002	334	-0,3	
F006	302	-0,8	
F007	389	0,5	
F009	463	1,5	
F011	895	7,4	E
F020	311	-0,7	
F022	310	-0,7	
F026	396	0,6	
F028	400,147	0,6	
F031	311	-0,7	
F034	458,353	1,4	
F038	227	-2,1	E
F042	440	1,2	
F044	349	-0,1	
F045	321	-0,5	
F047	300	-0,9	

KS A

Mittelwert	808,709	ng/kg TM
Vergleich-Stdabw.	149,880	ng/kg TM
rel. Vergleich-Stdabw.	18,53	%
untere Toleranzgrenze	531,882	ng/kg TM
obere Toleranzgrenze	1141,809	ng/kg TM
Horwitz-Verhältniszahl	0,8	n.Thomp.


KS B


353,262	ng/kg TM
66,172	ng/kg TM
18,73	%
231,129	ng/kg TM
500,513	ng/kg TM
0,9	n.Thomp.

Z_u-Score zu hoch

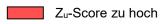
Z_u-Score zu niedrig

2.2.29 PCB 169

KS A

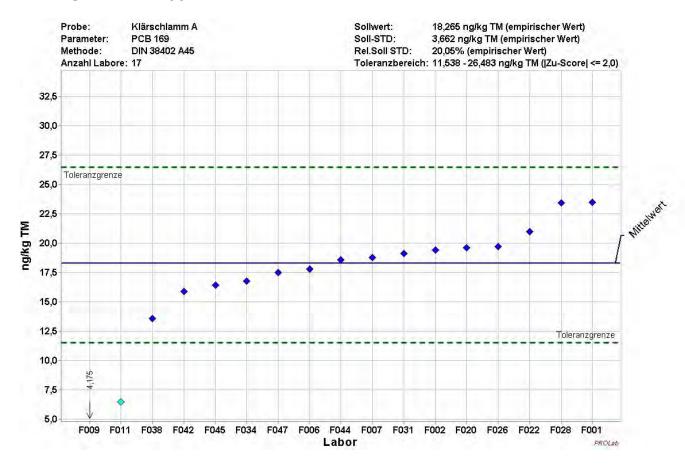
Labor	Messwert:	Zu-Score	Ausreißer
F001	23,5	1,3	
F002	19,4	0,3	
F006	17,8	-0,1	
F007	18,8	0,1	
F009	4,175	-4,2	Е
F011	6,50	-3,5	E
F020	19.6	0,3	
F022	20,97	0,7	
F026	19,7	0,3	
F028	23,427	1,3	
F031	19,1	0,2	
F034	16,780	-0,4	
F038	13,6	-1,4	
F042	15,9	-0,7	
F044	18,6	0,1	
F045	16,4	-0,6	
F047	17,5	-0,2	

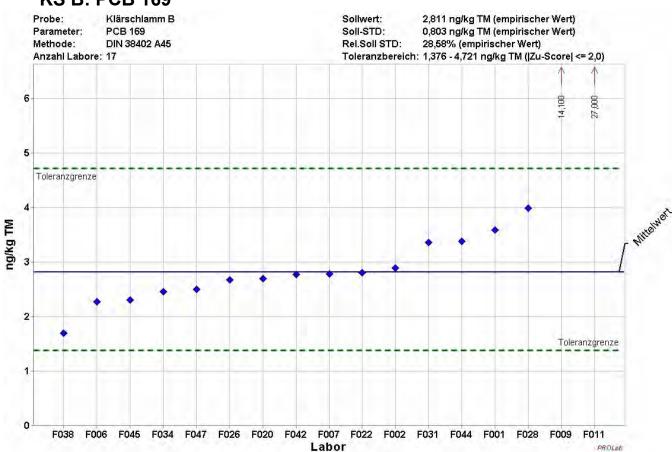
KS B


Labor	Messwert:	Zu-Score	Ausreißer
F001	3,59	0,8	
F002	2,89	0,1	
F006	2,27	-0,8	
F007	2,78	0,0	
F009	14,1	11,8	E
F011	27,0	25,3	Е
F020	2.7	-0,2	
F022	2,8	0,0	
F026	2,68	-0,2	
F028	3,987	1,2	
F031	3,36	0,6	
F034	2,456	-0,5	
F038	1,70	-1,5	
F042	2,77	-0,1	
F044	3,38	0,6	
F045	2,30	-0,7	
F047	2,50	-0,4	

KS A

Mittelwert	18,265	ng/kg TM
Vergleich-Stdabw.	3,662	ng/kg TM
rel. Vergleich-Stdabw.	20,05	%
untere Toleranzgrenze	11,538	ng/kg TM
obere Toleranzgrenze	26,483	ng/kg TM
Horwitz-Verhältniszahl	0,9	n.Thomp.


KS B


2,811	ng/kg TM
0,803	ng/kg TM
28,58	%
1,376	ng/kg TM
4,721	ng/kg TM
1,3	n. Thomp.

Z_u-Score zu niedrig

2.2.30 PCB 189

KS A

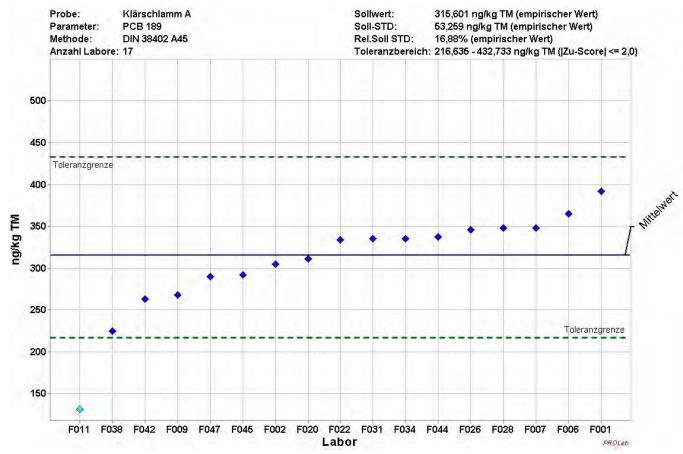
Labor	Messwert:	Zu-Score	Ausreißer
F001	392	1,3	
F002	305	-0,2	
F006	365	0,8	
F007	348	0,6	
F009	268	-1,0	
F011	131	-3,7	Е
F020	311	-0,1	
F022	334	0,3	
F026	346	0,5	
F028	347,917	0,6	
F031	335	0,3	
F034	335,060	0,3	
F038	225	-1,8	
F042	263	-1,1	
F044	337	0,4	
F045	292	-0,5	
F047	290	-0,5	

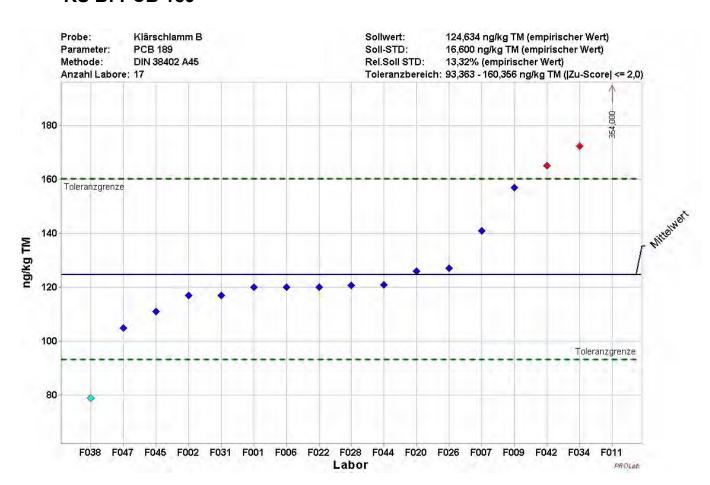
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	120	-0,3	
F002	117	-0,5	
F006	120	-0,3	
F007	141	0,9	
F009	157	1,8	
F011	354	12,8	Е
F020	126	0,1	
F022	120	-0,3	
F026	127	0,1	
F028	120,811	-0,2	
F031	117	-0,5	
F034	172,366	2,7	Е
F038	79,0	-2,9	Е
F042	165	2,3	Е
F044	121	-0,2	
F045	111	-0,9	
F047	105	-1,3	

KS A

Mittelwert	315,601	ng/kg TM
Vergleich-Stdabw.	53,259	ng/kg TM
rel. Vergleich-Stdabw.	16,88	%
untere Toleranzgrenze	216,635	ng/kg TM
obere Toleranzgrenze	432,733	ng/kg TM
Horwitz-Verhältniszahl	0,8	n.Thomp.


KS B


124,634	ng/kg TM
16,800	ng/kg TM
13,32	%
93,363	ng/kg TM
160,356	ng/kg TM
0,6	n.Thomp.

Z_u-Score zu hoch

Z_u-Score zu niedrig

2.2.31 PCB TE (Toxizitätsäquivalent dl-PCB)

KS A

Labor	Messwert:	Zu-Score	Ausreißer
F001	12,6	0,7	
F002	12,7	0,8	
F006	11,8	0,1	
F007	11,2	-0,3	
F011	2,03	-8,0	Е
F020	11.8	0,1	
F022	10,55	-0,9	
F026	13,3	1,3	
F028	12,114	0,4	
F031	11,2	-0,3	
F034	11,555	0,0	
F038	8,55	-2,5	Е
F042	10,9	-0,6	
F044	12,1	0,4	
F045	10,6	-0,8	
F047	12,0	0,3	

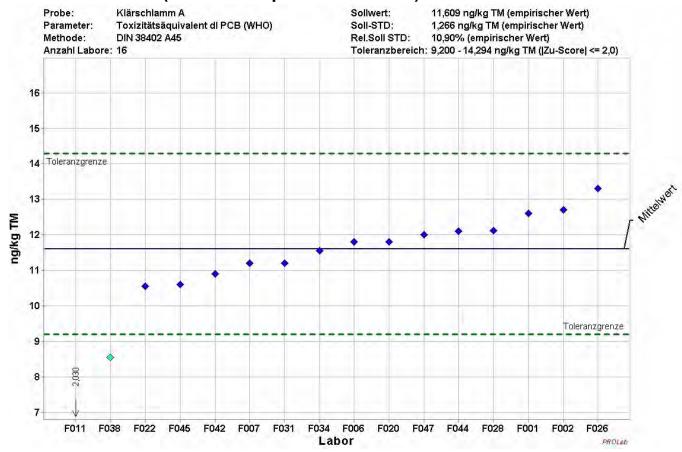
KS B

Labor	Messwert:	Zu-Score	Ausreißer
F001	1,86	-0,3	
F002	2,64	1,6	
F006	1,72	-0,7	
F007	2,29	0,8	
F011	13,3	26,4	Е
F020	2.0	0,1	
F022	1,79	-0,5	
F026	2,08	0,3	
F028	1,819	-0,4	
F031	2,27	0,7	
F034	1,726	-0,6	
F038	1,28	-1,9	
F042	2,16	0,5	
F044	2,08	0,3	
F045	1,69	-0,7	
F047	1,90	-0,1	

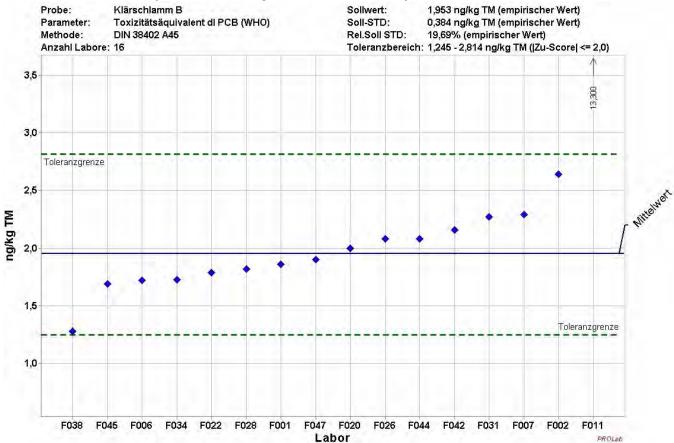
KS A

Mittelwert	11,609	ng/kg TM
Vergleich-Stdabw.	1,266	ng/kg TM
rel. Vergleich-Stdabw.	10,90	%
untere Toleranzgrenze	9,200	ng/kg TM
obere Toleranzgrenze	14,294	ng/kg TM
Horwitz-Verhältniszahl	0,5	n.Thomp.

KS B


1,953	ng/kg TM
0,384	ng/kg TM
19,69	%
1,245	ng/kg TM
2,814	ng/kg TM
0,9	n. Thomp.

Z_u-Score zu hoch


Z_u-Score zu niedrig

KS A: PCB TE (Toxizitätsäquivalent dl-PCB)

KS B: PCB TE (Toxizitätsäquivalent dl-PCB)

2.2.33 Laborbewertung FMA 1.6 - Dioxine -

	Labor									Labor								
D	Probe	F001	F002	F006	F007	F009	F011	F020	F022	F026	F028	F031	F034	F038	F042	F044	F045	F047
D48	Α																	
	В																	
D54	Α																	
	В																	
D66	Α																	
	В										> Z _u							
D67	Α					> Zu												
	В					> Z _u												
D70	А					> Zu	< Zu											
	В													< Zu			< Zu	
D73	А					> Z _u												
	В																	
D75	А				> Z _u	> Z _u												
	В					< Zu												

Z_u-Score zu hoch

Z_u-Score zu niedrig

Fehler bei der Beachtung der Mindestbestimmungsgrenze bei der Werteabgabe oder keine Abgabe eines Wertes Nicht auswertbarer Parameter

2.2.34 Laborbewertung FMA 1.6 - Furane -

	Labo									Labor								
F	Probe	F001	F002	F006	F007	F009	F011	F020	F022	F026	F028	F031	F034	F038	F042	F044	F045	F047
F83	Α					> Zu	< Zu											
	В						> Z u											
F94	Α					> Z _u	> Z _u											
	В						> Z u											
F114	Α					> Z _u					> Z u							
	В				> Z u		> Z u											
F118	Α					> Z _u	< Zu											
	В					> Z _u	> Z u											
F121	Α					> Z _u	< Z _u											
	В						> Z u										< Zu	> Z _u
F124	Α																	
	В																	
F130	Α					> Z _u	< Zu		> Z _u									
	В						> Z u		> Z _u									
F131	Α	> Z u					< Zu				> Z u							
	В					> Zu	> Z _u											
F134	Α					> Z _u	< Z _u											
	В					> Zu	> Z _u											
F135	A					> Z _u	< Z _u		_									
	В						> Z u		< Zu									
TE	A					F	< Z _u				> Z _u							
	В					F	> Z _u				> Z u							

Z_u-Score zu hoch

Z_u-Score zu niedrig

Fehler bei der Beachtung der Mindestbestimmungsgrenze bei der Werteabgabe oder keine Abgabe eines Wertes

Nicht auswertbarer Parameter

2.2.35 Laborbewertung FMA 1.6 - dIPCB - (+ Gesamtauswertung Fehlerzahl FMA 1.6 (grüne Zeile))

PCB											Labor								
B	PCB	Probe	F001	F002	F006	F007	F009	F011	F020	F022	F026	F028	F031	F034	F038	F042	F044	F045	F047
81 A B C 105 A B C 114 A B C 118 A B C B C B C B C B C B C B C B C B C B C B C B C B C B C B C B C B C B C B C C C B C C C B C C C B C C C C C C C C C C C C C	77	Α					< Z _u												
B		В					< Zu	> Z _u											
105	81																		
B		В																	
114	105																		
B		В						> Z u							< Zu				
118 A	114						> Z _u												
B															< Z _u				
123	118																		
B								> Z _u							< Z _u				
126	123																		
B																			
156 A < Zu	126														< Zu				
B																			
157 A > Zu < Zu	156																		
B >Zu >Zu < Zu								1							-				
167 A < Zu	157		> Z _u											_					
B >Zu <zu< td=""> <zu< td=""><td>10-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>> Z_u</td><td>< Z_u</td><td></td><td></td><td></td><td></td></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<></zu<>	10-													> Z _u	< Z _u				
169 A < Zu	167						< Z _u								_				
B >Zu >Zu 189 A < Zu	400						_								< Z _u				
189 A < Zu	169																		
B > Z _u > Z _u > Z _u > Z _u	190						> Z _u												
TE A F < Z _u < Z _u	109													> 7	-7	> 7			
	TE													- Zu		→ Zu			
	15														< Zu				
	E 1	D	2	0	0	2			0	2	0	E	0	2	12	4	0	2	1
F1 2 0 0 2 40 39 0 3 0 5 0 2 12 1 0 F2 0 0 0 15 17 0 1 0 1 0 0 2 0 0													1	ì			li .	0	0

F1 = Fehler bei Proben-Parameter-Kombination (rot= nicht bestanden, grün=bestanden)
F2 = Fehler bei Parametern (rot= nicht bestanden, grün=bestanden)
E = Fehler
F = Fehler bei der Beachtung der Mindestbestimmungsgrenze bei der Werteabgabe oder = Fehler bei der Beachtung der Mindestbestimmungsgrenze bei der Werteabgabe oder keine Abgabe eines Wertes

Zu-Score zu hoch

Z_u-Score zu niedrig

Fehler bei der Beachtung der Mindestbestimmungsgrenze bei der Werteabgabe oder keine Abgabe eines Wertes

Nicht auswertbarer Parameter

3.1 FMA 1.7 Benzo(a)pyren (B(a)P) [mg/kg TM]

Bei Klärschlamm B lag der Horrat bei 2,3. Es fand keine Eingrenzung des Horrats auf 2,0 statt. Die Werte wurden belassen und in die Bewertung einbezogen.

KS A

NO A			
Labor	Messwert:	Zu-Score	Ausreißer
F001	0,264	0,6	
F002	0,193	-0,3	
F003	0,27	0,6	
F004	0,231	0,2	
F006	0,152	-0,9	
F007	0,311	1,1	
F009	0,207	-0,1	
F011	0,470	2,8	E
F012	0,361	1,6	
F013	0,196	-0,3	
F014	0,203	-0,1	
F015	0,119	-1,4	
F016	0,192	-0,3	
F017	0,220	0,1	
F018	0,231	0,2	
F021	0,132	-1,2	
F022	0,239	0,3	
F023	0,253	0,4	
F024	0,13	-1,3	
F025	0,211	0,0	
F026	0,485	3,0	Е
F027	0,234	0,2	
F028	0,221	0,1	
F030	0,169	-0,7	
F031	0,262	0,5	
F032	0,250	0,4	
F033	0,269	0,6	
F034	0,376	1,8	
F035	0,188	-0,4	
F036	0,181	-0,5	
F037	152	1654,8	Е
F038	0,229	0,2	
F039	0,0997	-1,7	
F040	0,185	-0,4	
F042	0,105	-1,7	
F043	0,207	-0,1	
F044	0,140	-1,1	
F045	0,154	-0,9	

KS B

KSB					
Labor	Messwert :	Zu-Score	Ausreißer	F1	F2
F001	0,399	0,2		0	0
F002	0,306	-0,5		0	0
F003	0,53	0,8		0	0
F004	0,445	0,4		0	0
F006	0,253	-0,9		0	0
F007	0,527	0,8		0	0
F009	0,118	-1,9		0	0
F011	0,240	-1,0		1	0
F012	0,696	1,6		0	0
F013	0,176	-1,5		0	0
F014	0,525	0,8		0	0
F015	0,244	-1,0		0	0
F016	0,354	-0,1		0	0
F017	0,377	0,0		0	0
F018	0,408	0,2		0	0
F021	0,255	-0,9		0	0
F022	0,381	0,1		0	0
F023	0,465	0,5		0	0
F024	0,25	-0,9		0	0
F025	0,353	-0,1		0	0
F026	0,608	1,2		1	0
F027	0,425	0,3		0	0
F028	0,393	0,1		0	0
F030	0,264	-0,8		0	0
F031	0,445	0,4		0	0
F032	0,404	0,2		0	0
F033	0,547	0,9		0	0
F034	0,665	1,5		0	0
F035	0,317	-0,4		0	0
F036	0,278	-0,7		0	0
F037	273	1359,1	Е	2	1
F038	0,480	0,6		0	0
F039	0,1760	-1,5		0	0
F040	0,337	-0,2		0	0
F042	0,210	-1,2		0	0
F043	0,368	0,0		0	0
F044	0,215	-1,2		0	0
F045	0,298	-0,5		0	0

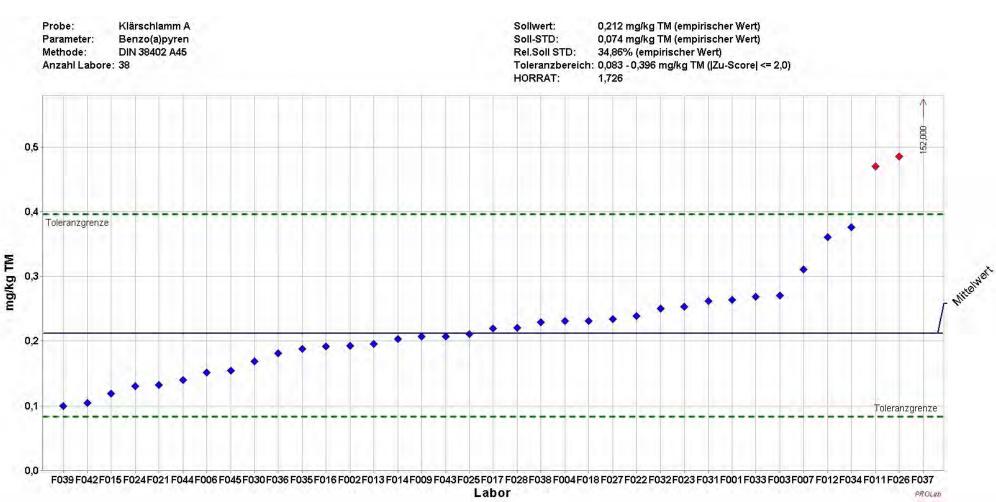
KS A

Mittelwert	0,212	mg/kg TM
Vergleich-Stdabw.	0,074	mg/kg TM
rel. Vergleich-Stdabw.	34,86	%
untere Toleranzgrenze	0,083	mg/kg TM
obere Toleranzgrenze	0,396	mg/kg TM
Horwitz-Verhältniszahl	1,7	

KS B

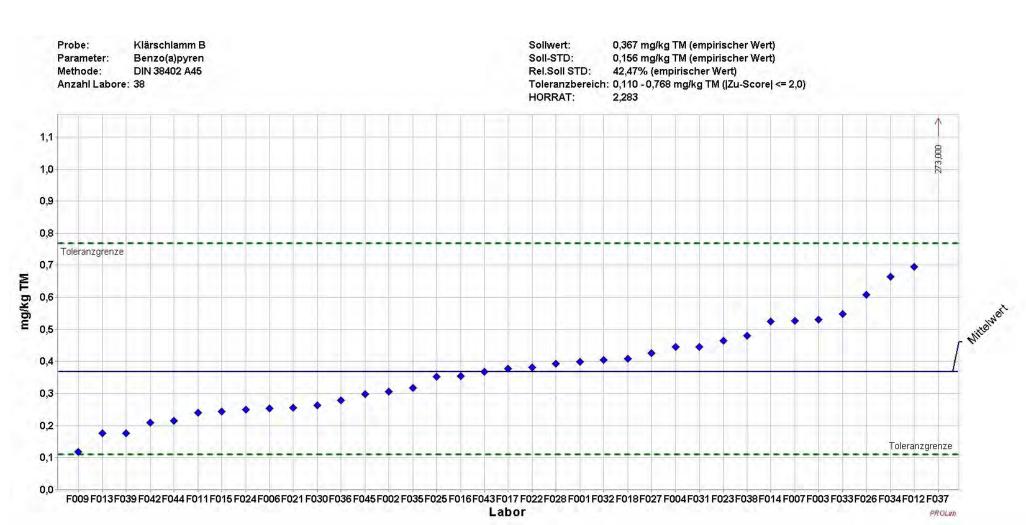
0,367	mg/kg TM
0,156	mg/kg TM
42,47	%
0,110	mg/kg TM
0,768	mg/kg TM
2,3	

Z_u-Score zu hoch


Z_u-Score zu niedrig

F1 = Fehler bei Proben-Parameter-Kombination (rot= nicht bestanden, grün=bestanden)

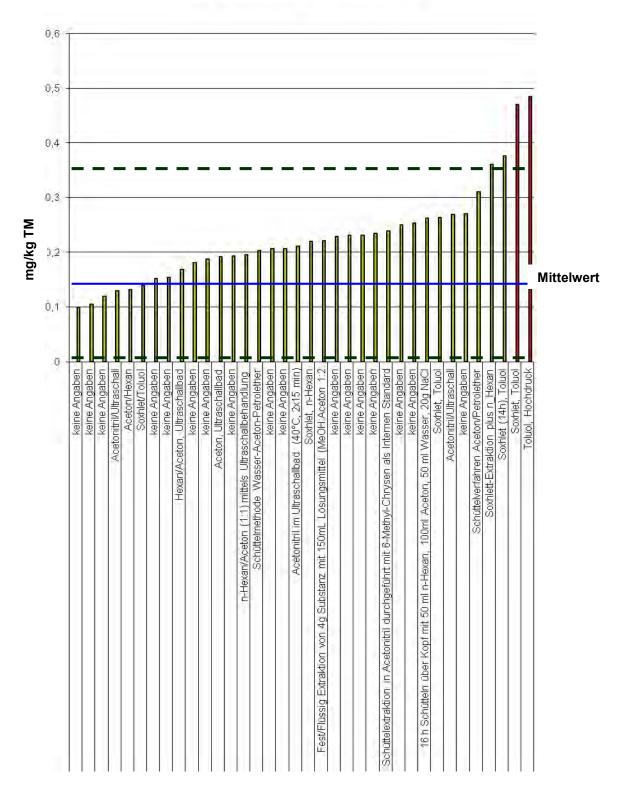
F2 = Fehler bei Parametern (rot= nicht bestanden, grün=bestanden)


KS A: Benzo(a)pyren [mg/kg TM]

Aufgrund eines Softwarefehlers wurde Labor 40 auf dieser Grafik nicht dargestellt.

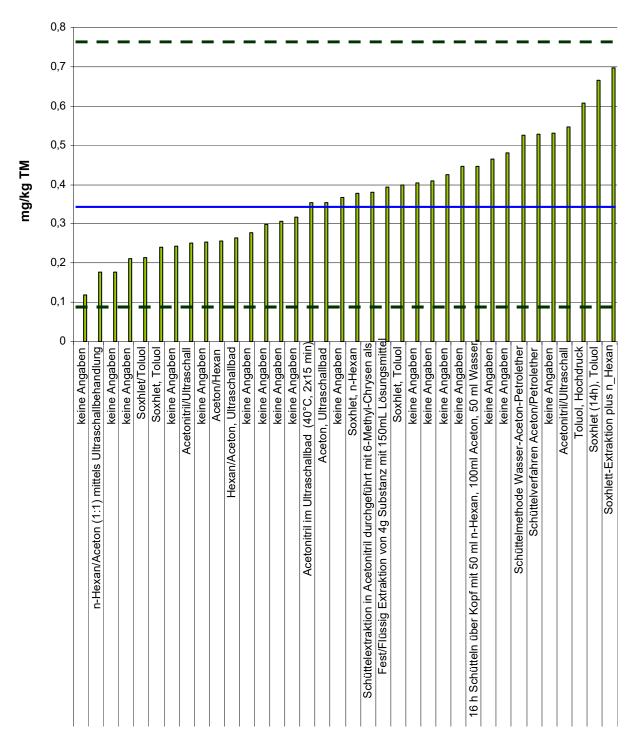
KS B: Benzo(a)pyren [mg/kg TM]

Aufgrund eines Softwarefehlers wurde Labor 40 auf dieser Grafik nicht dargestellt.


3.2 Auswertung der Methodenspezifizierung zur Benzo(a)pyren Analytik

Im Jahr 2024 wurden die Teilnehmer zum LÜRV-A Klärschlamm Ringversuch - Teilbereich Organik um eine spezifizierte Abgabe der benutzen Lösungsmittel und Extraktionsmethoden bei der Benzo(a)pyren Analytik gebeten.

Vielen Dank an alle Ringversuchsteilnehmer für die zusätzlichen Informationen, die unabhängig von den Ringversuchsergebnissen ausgewertet wurden, um bessere Einblicke in die Benzo(a)pyren Analytik zu erlangen. Zur Information übermitteln wir allen Teilnehmern des Ringversuchs diese Auswertung.


In folgenden Diagrammen sind die Angaben zur Analytik, bezüglich Extraktionsmethode und Lösungsmittel, wie sie von den Teilnehmern angegeben wurden, dargestellt.

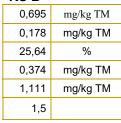
B(a)P Auswertung Methoden KS A

Aus Gründen der Darstellung wurde Labor F037 nicht dargestellt.

B(a)P Auswertung Methoden KS B

Aus Gründen der Darstellung wurde Labor F037 nicht dargestellt.

4.1 Perfluoroctansäure (PFOA) [mg/kg TM]

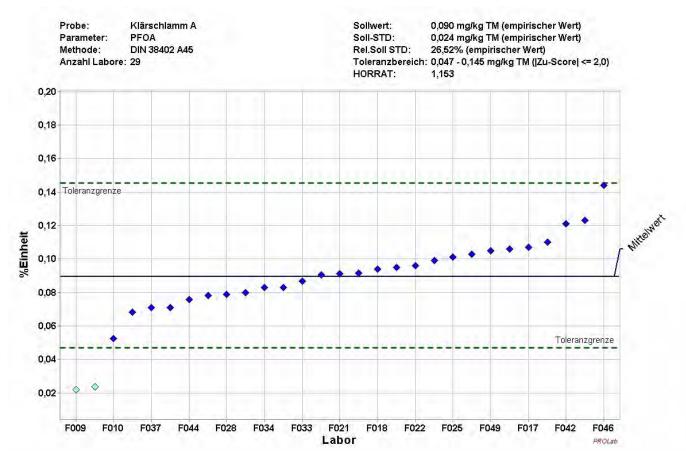

KS A	KS B

Labor	Messwert:	Zu-Score	Ausreißer	Labor	Messwert:	Zu-Score	Ausreißer
F001	0,106	0,6		F001	0,914	1,1	
F006	0.103	0,5		F006	0.865	0,8	
F007	0,080	-0,4		F007	0,550	-0,9	
F008	0,0238	-3,1	E	F008	0,124	-3,6	Е
F009	0,022	-3,2	Е	F009	0,231	-2,9	Е
F010	0,0525	-1,7		F010	0,635	-0,4	
F013	0,0831	-0,3		F013	0,681	-0,1	
F016	0,0782	-0,5		F016	0,660	-0,2	
F017	0,107	0,6		F017	0,641	-0,3	
F018	0,094	0,2		F018	0,656	-0,2	
F019	0,0991	0,3		F019	0,700	0,0	
F021	0,0913	0,1		F021	0,767	0,3	
F022	0,0959	0,2		F022	0,791	0,5	
F025	0,101	0,4		F025	0,724	0,1	
F028	0,079	-0,5		F028	0,549	-0,9	
F029	0,0915	0,1		F029	0,759	0,3	
F030	0,0951	0,2		F030	0,853	0,8	
F031	0,123	1,2		F031	0,897	1,0	
F033	0,0869	-0,1		F033	0,644	-0,3	
F034	0,083	-0,3		F034	0,578	-0,7	
F037	0,0708	-0,9		F037	0,616	-0,5	
F038	0,0905	0,0		F038	0,849	0,7	
F040	0,0683	-1,0		F040	0,552	-0,9	
F042	0,121	1,1		F042	0,979	1,4	
F044	0,0756	-0,7		F044	0,588	-0,7	
F045	0,07105	-0,9		F045	0,515	-1,1	
F046	0,144	2,0		F046	1,195	2,4	Е
F048	0,11	0,7		F048	0,58	-0,7	
F049	0,105	0,6		F049	0,782	0,4	

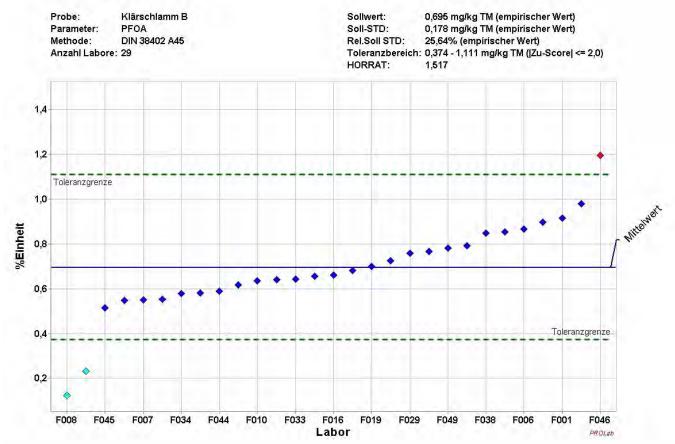
KS A

Mittelwert	0,090	mg/kg TM
Vergleich-Stdabw.	0,024	mg/kg TM
rel. Vergleich-Stdabw.	25,52	%
untere Toleranzgrenze	0,047	mg/kg TM
obere Toleranzgrenze	0,145	mg/kg TM
Horwitz-Verhältniszahl	1,2	

KS B



Z_u-Score zu hoch


Zu-Score zu niedrig Fehler bei der Beachtung der Mindestbestimmungsgrenze

Mindestbestimmungsgrenze bei der Werteabgabe oder keine Abgabe eines Wertes

KS A: Perfluoroctansäure (PFOA) [mg/kg TM]

KS B: Perfluoroctansäure (PFOA) [mg/kg TM]

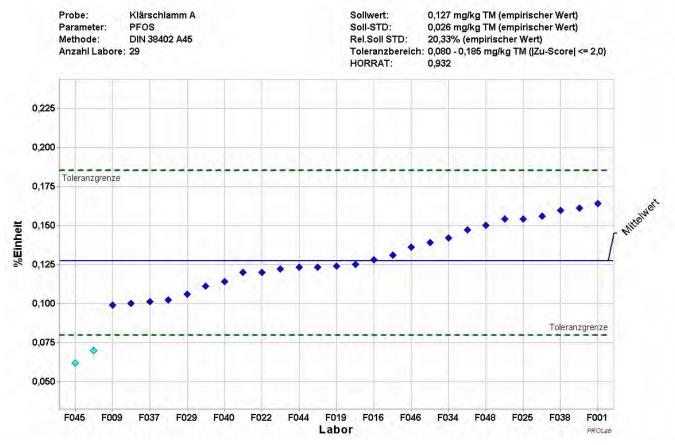
4.2 Perfluoroctansulfonat (PFOS) [mg/kg TM]

KS A KS B

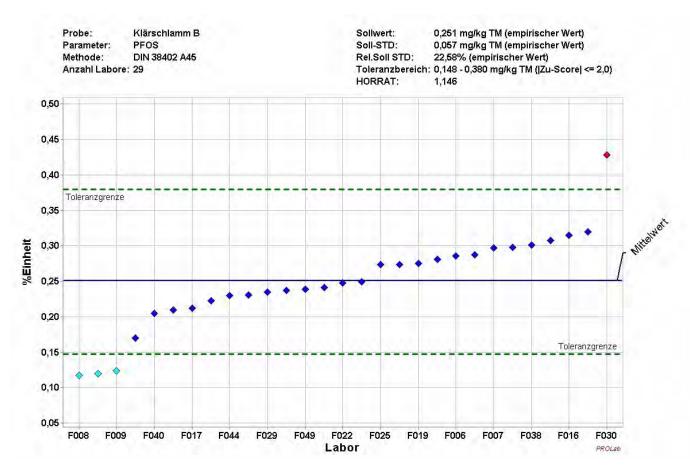
Labor	Messwert:	Zu-Score	Ausreißer
F001	0,164	1,3	
F006	0.147	0,7	
F007	0,154	0,9	
F008	0,0699	-2,4	Е
F009	0,099	-1,2	
F010	0,100	-1,1	
F013	0,120	-0,3	
F016	0,128	0,0	
F017	0,111	-0,7	
F018	0,122	-0,2	
F019	0,124	-0,1	
F021	0,161	1,2	
F022	0,12	-0,3	
F025	0,154	0,9	
F028	0,102	-1,1	
F029	0,106	-0,9	
F030	0,125	-0,1	
F031	0,139	0,4	
F033	0,131	0,1	
F034	0,142	0,5	
F037	0,101	-1,1	
F038	0,1595	1,1	
F040	0,114	-0,6	
F042	0,156	1,0	
F044	0,123	-0,2	
F045	0,0619	-2,8	Е
F046	0,136	0,3	
F048	0,15	0,8	
F049	0,123	-0,2	

Labor	Messwert:	Zu-Score	Ausreißer
F001	0,308	0,9	
F006	0.286	0,5	
F007	0,297	0,7	
F008	0,117	-2,6	E
F009	0,124	- 2,5	Е
F010	0,210	-0,8	
F013	0,231	-0,4	
F016	0,315	1,0	
F017	0,212	-0,8	
F018	0,298	0,7	
F019	0,275	0,4	
F021	0,287	0,6	
F022	0,248	-0,1	
F025	0,274	0,4	
F028	0,237	-0,3	
F029	0,235	-0,3	
F030	0,428	2,7	Е
F031	0,249	0,0	
F033	0,274	0,4	
F034	0,241	-0,2	
F037	0,223	-0,5	
F038	0,301	0,8	
F040	0,205	-0,9	
F042	0,320	1,1	
F044	0,230	-0,4	
F045	0,170	-1,6	
F046	0,281	0,5	
F048	0,12	-2,5	Е
F049	0,239	-0,2	

KS A


Mittelwert	0,127	mg/kg TM
Vergleich-Stdabw.	0,026	mg/kg TM
rel. Vergleich-Stdabw.	20,33	%
untere Toleranzgrenze	0,080	mg/kg TM
obere Toleranzgrenze	0,185	mg/kg TM
Horwitz-Verhältniszahl	0,9	

KS B	
0,251	mg/kg TM
0,057	mg/kg TM
22,58	%
0,148	mg/kg TM
0,380	mg/kg TM


1,1

 $\mathbf{Z}_{\text{u}} ext{-}\mathsf{Score}\;\mathsf{zu}\;\mathsf{hoch}$ Zu-Score zu niedrig Fehler bei der Beachtung der Mindestbestimmungsgrenze bei der Werteabgabe oder keine Abgabe eines Wertes

KS A: Perfluoroctansulfonat (PFOS) [mg/kg TM]

KS B: Perfluoroctansulfonat (PFOS) [mg/kg TM]

4.3 FMA 1.8 Perfluorierte Tenside (PFC) [mg/kg TM] + Auswertung FMA 1.8 (grüne Spalte)

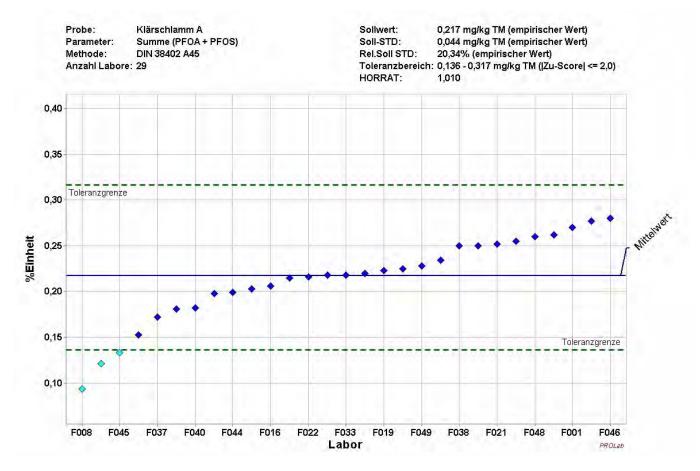
KS A KS B

NO A				NOD					
Labor	Messwert:	Zu-Score	Ausreißer	Labor	Messwert:	Zu-Score	Ausreißer	F1	F2
F001	0,270	1,1		F001	1,22	1,0		0	0
F006	0,250	0,7		F006	1,151	0,7		0	0
F007	0,234	0,3		F007	0,846	-0,5		0	0
F008	0,0937	-3,0	Е	F008	0,240	-3,2	E	6	3
F009	0,121	-2,4	Е	F009	0,355	-2,7	E	5	2
F010	0,1525	-1,6		F010	0,845	-0,5		0	0
F013	0,203	-0,4		F013	0,911	-0,2		0	0
F016	0,2062	-0,3		F016	0,975	0,1		0	0
F017	0,218	0,0		F017	0,853	-0,4		0	0
F018	0,215	-0,1		F018	0,955	0,0		0	0
F019	0,223	0,1		F019	0,975	0,1		0	0
F021	0,252	0,7		F021	1,054	0,4		0	0
F022	0,216	0,0		F022	1,04	0,3		0	0
F025	0,255	0,8		F025	0,998	0,2		0	0
F028	0,181	-0,9		F028	0,786	-0,7		0	0
F029	0,198	-0,5		F029	0,994	0,2		0	0
F030	0,220	0,1		F030	1,28	1,2		1	0
F031	0,262	0,9		F031	1,15	0,7		0	0
F033	0,218	0,0		F033	0,918	-0,1		0	0
F034	0,225	0,2		F034	0,819	-0,6		0	0
F037	0,172	-1,1		F037	0,839	-0,5		0	0
F038	0,2499	0,7		F038	1,15	0,7		0	0
F040	0,182	-0,9		F040	0,757	-0,9		0	0
F042	0,277	1,2		F042	1,30	1,2		0	0
F044	0,199	-0,4		F044	0,819	-0,6		0	0
F045	0,133	-2,1	Е	F045	0,686	-1,2		2	0
F046	0,280	1,3		F046	1,475	1,9		1	0
F048	0,26	0,9		F048	0,70	-1,1		1	0
F049	0,228	0,2		F049	1,021	0,3		0	0

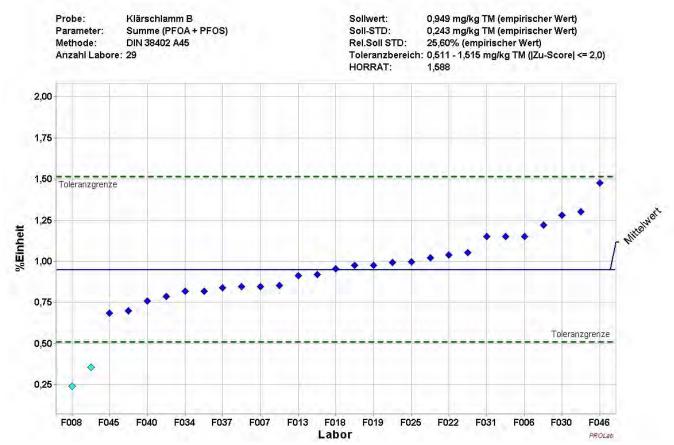
KS A

Mittelwert	0,217	mg/kg TM
Vergleich-Stdabw.	0,044	mg/kg TM
rel. Vergleich-Stdabw.	20,34	%
untere Toleranzgrenze	0,136	mg/kg TM
obere Toleranzgrenze	0,317	mg/kg TM
Horwitz-Verhältniszahl	1,0	

KS B


0,949	0mg/kg TM
0,243	mg/kg TM
25,60	%
0,511	mg/kg TM
1,515	mg/kg TM
1,6	

Zu-Score zu hoch
Zu-Score zu niedrig


F1 = Fehler bei Proben-Parameter-Kombination (rot= nicht bestanden, grün=bestanden)

F2 = Fehler bei Parametern (rot= nicht bestanden, grün=bestanden)

KS A: Perfluorierte Tenside (PFC) [mg/kg TM]

KS B: Perfluorierte Tenside (PFC) [mg/kg TM]

